Standalone Honeynet

An environment created for the purpose of attracting attackers and eliciting their behaviors that is not connected to any production enterprise systems.

ID: D3-SHN
Subclasses: 
Artifacts:  Decoy Artifact
Tactic:

Informational References

https://d3fend.mitre.org/technique/d3f:StandaloneHoneynet/

Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001
CM0082 Deception and Decoys Deception can be used to conceal or mislead others on the “location, capability, operational status, mission type, and/or robustness” of a satellite. Public messaging, such as launch announcements, can limit information or actively spread disinformation about the capabilities of a satellite, and satellites can be operated in ways that conceal some of their capabilities. Another form of deception could be changing the capabilities or payloads on satellites while in orbit. Satellites with swappable payload modules could have on-orbit servicing vehicles that periodically move payloads from one satellite to another, further complicating the targeting calculus for an adversary because they may not be sure which type of payload is currently on which satellite. Satellites can also use tactical decoys to confuse the sensors on ASAT weapons and SDA systems. A satellite decoy can consist of an inflatable device designed to mimic the size and radar signature of a satellite, and multiple decoys can be stored on the satellite for deployment when needed. Electromagnetic decoys can also be used in space that mimic the RF signature of a satellite, similar to aircraft that use airborne decoys, such as the ADM-160 Miniature Air-launched Decoy (MALD).* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG SC-26 SC-30 D3-DE D3-CHN D3-SHN D3-IHN D3-DO D3-DF D3-DNR D3-DP D3-DPR D3-DST D3-DUC
CM0062 Dummy Process - Aggregator Node According to Securing Sensor Nodes Against Side Channel Attacks, it is practically inefficient to prevent adversaries from identifying aggregator nodes in a network (i.e., constellation) because camouflaging traffic in sensor networks is power intensive. Consequently, focus on preventing adversaries from identifying valid aggregation cycles of aggregator nodes. One solution to counter such attacks is to have each aggregator node execute dummy operations that resemble the average power consumption curve observed during the normal operation of the aggregator node. Apart from simulating the power consumption of a genuine process execution, the two necessities that the execution of the dummy process must incorporate to be successful in thwarting the accumulation phase are to use a different dummy execution process each time or have a low repetition rate. This should help prevent the attacker from finding a pattern that would differentiate the execution of a dummy process from the normal execution of an aggregator node. The second requirement relates to the timing of the execution of the dummy process. Depending on whether there is a pattern to the timing of the execution of a dummy process, a threat actor may be able to identify and disregard the dummy process. For example, if a threat actor is capable of identifying the presence or absence of a radio frequency transmission, the attacker can disregard any power consumption curve computed during the absence of transmission signal. Similarly, if the dummy process is not executed every time the aggregator node receives a transmission, the attacker will be able to identify invalid transmission. Hence, to ensure the effectiveness of this scheme, the dummy process must be executed each time the aggregator receives a transmission as well as randomly during idle periods. The advantage of incorporating dummy processes in an aggregator is to minimize the ease of identifying transmission flow in a sensor network that can be used to identify the base station of the sensor network, which could be highly confidential in critical applications. PE-19 PE-19(1) D3-DE D3-CHN D3-SHN D3-IHN D3-DO D3-DNR A.7.5 A.7.8 A.8.12

Related SPARTA Techniques and Sub-Techniques

ID Name Description
REC-0007 Monitor for Safe-Mode Indicators Threat actors may gather information regarding safe-mode indicators on the victim spacecraft. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
REC-0009 Gather Mission Information Threat actors may initially seek to gain an understanding of a target mission by gathering information commonly captured in a Concept of Operations (or similar) document and related artifacts. Information of interest includes, but is not limited to: - the needs, goals, and objectives of the system - system overview and key elements/instruments - modes of operations (including operational constraints) - proposed capabilities and the underlying science/technology used to provide capabilities (i.e., scientific papers, research studies, etc.) - physical and support environments
IA-0005 Rendezvous & Proximity Operations Threat actors may perform a space rendezvous which is a set of orbital maneuvers during which a spacecraft arrives at the same orbit and approach to a very close distance (e.g. within visual contact or close proximity) to a target spacecraft.
IA-0005.02 Docked Vehicle / OSAM Threat actors may leverage docking vehicles to laterally move into a target spacecraft. If information is known on docking plans, a threat actor may target vehicles on the ground or in space to deploy malware to laterally move or execute malware on the target spacecraft via the docking interface.
IA-0005.03 Proximity Grappling Threat actors may posses the capability to grapple target spacecraft once it has established the appropriate space rendezvous. If from a proximity / rendezvous perspective a threat actor has the ability to connect via docking interface or expose testing (i.e., JTAG port) once it has grappled the target spacecraft, they could perform various attacks depending on the access enabled via the physical connection.
IA-0008 Rogue External Entity Threat actors may gain access to a victim spacecraft through the use of a rogue external entity. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.01 Rogue Ground Station Threat actors may gain access to a victim spacecraft through the use of a rogue ground system. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.02 Rogue Spacecraft Threat actors may gain access to a target spacecraft using their own spacecraft that has the capability to maneuver within close proximity to a target spacecraft to carry out a variety of TTPs (i.e., eavesdropping, side-channel, etc.). Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference.
IA-0008.03 ASAT/Counterspace Weapon Threat actors may utilize counterspace platforms to access/impact spacecraft. These counterspace capabilities vary significantly in the types of effects they create, the level of technological sophistication required, and the level of resources needed to develop and deploy them. These diverse capabilities also differ in how they are employed and how easy they are to detect and attribute and the permanence of the effects they have on their target.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
IA-0010 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim spacecraft being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
EX-0011 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim spacecraft being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
EX-0016 Jamming Threat actors may attempt to jam Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to inhibit a spacecraft's position, navigation, and/or timing functions.
EX-0016.01 Uplink Jamming An uplink jammer is used to interfere with signals going up to a satellite by creating enough noise that the satellite cannot distinguish between the real signal and the noise. Uplink jamming of the control link, for example, can prevent satellite operators from sending commands to a satellite. However, because the uplink jammer must be within the field of view of the antenna on the satellite receiving the command link, the jammer must be physically located within the vicinity of the command station on the ground.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0016.02 Downlink Jamming Downlink jammers target the users of a satellite by creating noise in the same frequency as the downlink signal from the satellite. A downlink jammer only needs to be as powerful as the signal being received on the ground and must be within the field of view of the receiving terminal’s antenna. This limits the number of users that can be affected by a single jammer. Since many ground terminals use directional antennas pointed at the sky, a downlink jammer typically needs to be located above the terminal it is attempting to jam. This limitation can be overcome by employing a downlink jammer on an air or space-based platform, which positions the jammer between the terminal and the satellite. This also allows the jammer to cover a wider area and potentially affect more users. Ground terminals with omnidirectional antennas, such as many GPS receivers, have a wider field of view and thus are more susceptible to downlink jamming from different angles on the ground.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0017 Kinetic Physical Attack Kinetic physical attacks attempt to damage or destroy space- or land-based space assets. They typically are organized into three categories: direct-ascent, co-orbital, and ground station attacks [beyond the focus of SPARTA at this time]. The nature of these attacks makes them easier to attribute and allow for better confirmation of success on the part of the attacker.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0017.01 Direct Ascent ASAT A direct-ascent ASAT is often the most commonly thought of threat to space assets. It typically involves a medium- or long-range missile launching from the Earth to damage or destroy a satellite in orbit. This form of attack is often easily attributed due to the missile launch which can be easily detected. Due to the physical nature of the attacks, they are irreversible and provide the attacker with near real-time confirmation of success. Direct-ascent ASATs create orbital debris which can be harmful to other objects in orbit. Lower altitudes allow for more debris to burn up in the atmosphere, while attacks at higher altitudes result in more debris remaining in orbit, potentially damaging other spacecraft in orbit.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0017.02 Co-Orbital ASAT Co-orbital ASAT attacks are when another satellite in orbit is used to attack. The attacking satellite is first placed into orbit, then later maneuvered into an intercepting orbit. This form of attack requires a sophisticated on-board guidance system to successfully steer into the path of another satellite. A co-orbital attack can be a simple space mine with a small explosive that follows the orbital path of the targeted satellite and detonates when within range. Another co-orbital attack strategy is using a kinetic-kill vehicle (KKV), which is any object that can be collided into a target satellite.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018 Non-Kinetic Physical Attack A non-kinetic physical attack is when a satellite is physically damaged without any direct contact. Non-kinetic physical attacks can be characterized into a few types: electromagnetic pulses, high-powered lasers, and high-powered microwaves. These attacks have medium possible attribution levels and often provide little evidence of success to the attacker.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018.01 Electromagnetic Pulse (EMP) An EMP, such as those caused by high-altitude detonation of certain bombs, is an indiscriminate form of attack in space. For example, a nuclear detonation in space releases an electromagnetic pulse (EMP) that would have near immediate consequences for the satellites within range. The detonation also creates a high radiation environment that accelerates the degradation of satellite components in the affected orbits.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018.02 High-Powered Laser A high-powered laser can be used to permanently or temporarily damage critical satellite components (i.e. solar arrays or optical centers). If directed toward a satellite’s optical center, the attack is known as blinding or dazzling. Blinding, as the name suggests, causes permanent damage to the optics of a satellite. Dazzling causes temporary loss of sight for the satellite. While there is clear attribution of the location of the laser at the time of the attack, the lasers used in these attacks may be mobile, which can make attribution to a specific actor more difficult because the attacker does not have to be in their own nation, or even continent, to conduct such an attack. Only the satellite operator will know if the attack is successful, meaning the attacker has limited confirmation of success, as an attacked nation may not choose to announce that their satellite has been attacked or left vulnerable for strategic reasons. A high-powered laser attack can also leave the targeted satellite disabled and uncontrollable, which could lead to collateral damage if the satellite begins to drift. A higher-powered laser may permanently damage a satellite by overheating its parts. The parts most susceptible to this are satellite structures, thermal control panels, and solar panels.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018.03 High-Powered Microwave High-powered microwave (HPM) weapons can be used to disrupt or destroy a satellite’s electronics. A “front-door” HPM attack uses a satellite’s own antennas as an entry path, while a “back-door” attack attempts to enter through small seams or gaps around electrical connections and shielding. A front-door attack is more straightforward to carry out, provided the HPM is positioned within the field of view of the antenna that it is using as a pathway, but it can be thwarted if the satellite uses circuits designed to detect and block surges of energy entering through the antenna. In contrast, a back-door attack is more challenging, because it must exploit design or manufacturing flaws, but it can be conducted from many angles relative to the satellite. Both types of attacks can be either reversible or irreversible; however, the attacker may not be able to control the severity of the damage from the attack. Both front-door and back-door HPM attacks can be difficult to attribute to an attacker, and like a laser weapon, the attacker may not know if the attack has been successful. A HPM attack may leave the target satellite disabled and uncontrollable which can cause it to drift into other satellites, creating further collateral damage.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
DE-0002 Prevent Downlink Threat actors may target the downlink connections to prevent the victim spacecraft from sending telemetry to the ground controllers. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0002.02 Jam Link Signal Threat actors may overwhelm/jam the downlink signal to prevent transmitted telemetry signals from reaching their destination without severe modification/interference, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0009 Camouflage, Concealment, and Decoys (CCD) This technique deals with the more physical aspects of CCD that may be utilized by threat actors. There are numerous ways a threat actor may utilize the physical operating environment to their advantage, including powering down and laying dormant within debris fields as well as launching EMI attacks during space-weather events.
DE-0009.01 Debris Field Threat actors may hide their spacecraft by laying dormant within clusters of space junk or similar debris fields. This could serve several purposes including concealment of inspection activities being performed by the craft, as well as facilitating some future kinetic intercept/attack, and more.
EXF-0002 Side-Channel Attack Threat actors may use a side-channel attack attempts to gather information by measuring or exploiting indirect effects of the spacecraft. Information within the spacecraft can be extracted through these side-channels in which sensor data is analyzed in non-trivial ways to recover subtle, hidden or unexpected information. A series of measurements of a side-channel constitute an identifiable signature which can then be matched against a signature database to identify target information, without having to explicitly decode the side-channel.
EXF-0002.03 Traffic Analysis Attacks In a terrestrial environment, threat actors use traffic analysis attacks to analyze traffic flow to gather topological information. This traffic flow can divulge information about critical nodes, such as the aggregator node in a sensor network. In the space environment, specifically with relays and constellations, traffic analysis can be used to understand the energy capacity of spacecraft node and the fact that the transceiver component of a spacecraft node consumes the most power. The spacecraft nodes in a constellation network limit the use of the transceiver to transmit or receive information either at a regulated time interval or only when an event has been detected. This generally results in an architecture comprising some aggregator spacecraft nodes within a constellation network. These spacecraft aggregator nodes are the sensor nodes whose primary purpose is to relay transmissions from nodes toward the ground station in an efficient manner, instead of monitoring events like a normal node. The added functionality of acting as a hub for information gathering and preprocessing before relaying makes aggregator nodes an attractive target to side channel attacks. A possible side channel attack could be as simple as monitoring the occurrences and duration of computing activities at an aggregator node. If a node is frequently in active states (instead of idle states), there is high probability that the node is an aggregator node and also there is a high probability that the communication with the node is valid. Such leakage of information is highly undesirable because the leaked information could be strategically used by threat actors in the accumulation phase of an attack.

Space Threats Mapped

ID Description
SV-CF-2 Eavesdropping (RF and proximity)
SV-MA-2 Heaters and flow valves of the propulsion subsystem are controlled by electric signals so cyberattacks against these signals could cause propellant lines to freeze, lock valves, waste propellant or even put in de-orbit or unstable spinning

Sample Requirements

Requirement
See threat ID SV-AC-1 for crypto and auth requirements. But to protect for TEMPEST. The spacecraft shall be designed such that it protects itself from information leakage due to electromagnetic signals emanations. {SV-CF-2,SV-MA-2} {PE-19,PE-19(1)}
The spacecraft shall protect system components, associated data communications, and communication buses in accordance with: (i) national emissions and TEMPEST policies and procedures, and (ii) the security category or sensitivity of the transmitted information. {SV-CF-2,SV-MA-2} {PE-19,PE-19(1)}
The Program shall describe (a) the separation between RED and BLACK cables, (b) the filtering on RED power lines, (c) the grounding criteria for the RED safety grounds, (d) and the approach for dielectric separators on any potential fortuitous conductors. {SV-CF-2,SV-MA-2} {PE-19,PE-19(1)}