A.7.8 - Equipment siting and protection

NIST SP 800-53 Revision 5 Mapping

ID Name
PE-9 Power Equipment and Cabling
PE-13 Fire Protection
PE-14 Environmental Controls
PE-15 Water Damage Protection
PE-18 Location of System Components
PE-19 Information Leakage
PE-23 Facility Location

SPARTA Countermeasures Mapping

ID Name Description D3FEND
CM0085 Electromagnetic Shielding Satellite components can be vulnerable to the effects of background radiation in the space environment and deliberate attacks from HPM and electromagnetic pulse weapons. The effects can include data corruption on memory chips, processor resets, and short circuits that permanently damage components.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG D3-PH D3-RFS
CM0086 Filtering and Shuttering Filters and shutters can be used on remote sensing satellites to protect sensors from laser dazzling and blinding. Filters can protect sensors by only allowing light of certain wavelengths to reach the sensors. Filters are not very effective against lasers operating at the same wavelengths of light the sensors are designed to detect because a filter that blocks these wavelengths would also block the sensor from its intended mission. A shutter acts by quickly blocking or diverting all light to a sensor once an anomaly is detected or a threshold is reached, which can limit damage but also temporarily interrupts the collection of data.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG D3-PH
CM0003 TEMPEST The spacecraft should protect system components, associated data communications, and communication buses in accordance with TEMPEST controls to prevent side channel / proximity attacks. Encompass the spacecraft critical components with a casing/shielding so as to prevent access to the individual critical components. D3-PH D3-RFS
CM0062 Dummy Process - Aggregator Node According to Securing Sensor Nodes Against Side Channel Attacks, it is practically inefficient to prevent adversaries from identifying aggregator nodes in a network (i.e., constellation) because camouflaging traffic in sensor networks is power intensive. Consequently, focus on preventing adversaries from identifying valid aggregation cycles of aggregator nodes. One solution to counter such attacks is to have each aggregator node execute dummy operations that resemble the average power consumption curve observed during the normal operation of the aggregator node. Apart from simulating the power consumption of a genuine process execution, the two necessities that the execution of the dummy process must incorporate to be successful in thwarting the accumulation phase are to use a different dummy execution process each time or have a low repetition rate. This should help prevent the attacker from finding a pattern that would differentiate the execution of a dummy process from the normal execution of an aggregator node. The second requirement relates to the timing of the execution of the dummy process. Depending on whether there is a pattern to the timing of the execution of a dummy process, a threat actor may be able to identify and disregard the dummy process. For example, if a threat actor is capable of identifying the presence or absence of a radio frequency transmission, the attacker can disregard any power consumption curve computed during the absence of transmission signal. Similarly, if the dummy process is not executed every time the aggregator node receives a transmission, the attacker will be able to identify invalid transmission. Hence, to ensure the effectiveness of this scheme, the dummy process must be executed each time the aggregator receives a transmission as well as randomly during idle periods. The advantage of incorporating dummy processes in an aggregator is to minimize the ease of identifying transmission flow in a sensor network that can be used to identify the base station of the sensor network, which could be highly confidential in critical applications. D3-DE D3-CHN D3-SHN D3-IHN D3-DO D3-DNR
CM0042 Robust Fault Management Ensure fault management system cannot be used against the spacecraft. Examples include: safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of telemetry to cause action from ground, or some sort of proximity operation to cause spacecraft to go into safe mode. Understanding the safing procedures and ensuring they do not put the spacecraft in a more vulnerable state is key to building a resilient spacecraft. D3-AH D3-EHPV D3-PSEP D3-PH D3-SCP
CM0057 Tamper Resistant Body Using a tamper resistant body can increase the one-time cost of the sensor node but will allow the node to conserve the power usage when compared with other countermeasures. D3-PH D3-RFS
CM0058 Power Randomization Power randomization is a technique in which a hardware module is built into the chip that adds noise to the power consumption. This countermeasure is simple and easy to implement but is not energy efficient and could be impactful for size, weight, and power which is limited on spacecraft as it adds to the fabrication cost of the device. D3-PH D3-RFS
CM0059 Power Consumption Obfuscation Design hardware circuits or perform obfuscation in general that mask the changes in power consumption to increase the cost/difficulty of a power analysis attack. This will increase the cost of manufacturing sensor nodes. D3-PH D3-RFS
CM0060 Secret Shares Use of secret shares in which the original computation is divided probabilistically such that the power subset of shares is statistically independent. One of the major drawbacks of this solution is the increase in the power consumption due to the number of operations that are almost doubled. D3-PH D3-RFS
CM0061 Power Masking Masking is a scheme in which the intermediate variable is not dependent on an easily accessible subset of secret key. This results in making it impossible to deduce the secret key with partial information gathered through electromagnetic leakage. D3-PH D3-RFS
CM0063 Increase Clock Cycles/Timing Use more clock cycles such that branching does not affect the execution time. Also, the memory access times should be standardized to be the same over all accesses. If timing is not mission critical and time is in abundance, the access times can be reduced by adding sufficient delay to normalize the access times. These countermeasures will result in increased power consumption which may not be conducive for low size, weight, and power missions. D3-PH D3-RFS
CM0064 Dual Layer Protection Use a dual layered case with the inner layer a highly conducting surface and the outer layer made of a non-conducting material. When heat is generated from internal computing components, the inner, highly conducting surface will quickly dissipate the heat around. The outer layer prevents accesses to the temporary hot spots formed on the inner layer. D3-PH D3-RFS

Related SPARTA Techniques and Sub-Techniques

ID Name Description
REC-0005 Eavesdropping Threat actors may seek to capture network communications throughout the ground station and radio frequency (RF) communication used for uplink and downlink communications. RF communication frequencies vary between 30MHz and 60 GHz. Threat actors may capture RF communications using specialized hardware, such as software defined radio (SDR), handheld radio, or a computer with radio demodulator turned to the communication frequency. Network communications may be captured using packet capture software while the threat actor is on the target network.
REC-0005.03 Proximity Operations Threat actors may capture signals and/or network communications as they travel on-board the vehicle (i.e., EMSEC/TEMPEST), via RF, or terrestrial networks. This information can be decoded to determine commanding and telemetry protocols, command times, and other information that could be used for future attacks.
IA-0003 Crosslink via Compromised Neighbor Threat actors may compromise a victim spacecraft via the crosslink communications of a neighboring spacecraft that has been compromised. spacecraft in close proximity are able to send commands back and forth. Threat actors may be able to leverage this access to compromise other spacecraft once they have access to another that is nearby.
IA-0005 Rendezvous & Proximity Operations Threat actors may perform a space rendezvous which is a set of orbital maneuvers during which a spacecraft arrives at the same orbit and approach to a very close distance (e.g. within visual contact or close proximity) to a target spacecraft.
IA-0005.01 Compromise Emanations Threat actors in close proximity may intercept and analyze electromagnetic radiation emanating from crypto equipment and/or the target spacecraft(i.e., main bus) to determine whether the emanations are information bearing. The data could be used to establish initial access.
IA-0005.02 Docked Vehicle / OSAM Threat actors may leverage docking vehicles to laterally move into a target spacecraft. If information is known on docking plans, a threat actor may target vehicles on the ground or in space to deploy malware to laterally move or execute malware on the target spacecraft via the docking interface.
IA-0005.03 Proximity Grappling Threat actors may posses the capability to grapple target spacecraft once it has established the appropriate space rendezvous. If from a proximity / rendezvous perspective a threat actor has the ability to connect via docking interface or expose testing (i.e., JTAG port) once it has grappled the target spacecraft, they could perform various attacks depending on the access enabled via the physical connection.
IA-0008 Rogue External Entity Threat actors may gain access to a victim spacecraft through the use of a rogue external entity. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.01 Rogue Ground Station Threat actors may gain access to a victim spacecraft through the use of a rogue ground system. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.02 Rogue Spacecraft Threat actors may gain access to a target spacecraft using their own spacecraft that has the capability to maneuver within close proximity to a target spacecraft to carry out a variety of TTPs (i.e., eavesdropping, side-channel, etc.). Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference.
IA-0008.03 ASAT/Counterspace Weapon Threat actors may utilize counterspace platforms to access/impact spacecraft. These counterspace capabilities vary significantly in the types of effects they create, the level of technological sophistication required, and the level of resources needed to develop and deploy them. These diverse capabilities also differ in how they are employed and how easy they are to detect and attribute and the permanence of the effects they have on their target.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
IA-0010 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim spacecraft being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
EX-0006 Disable/Bypass Encryption Threat actors may perform specific techniques in order to bypass or disable the encryption mechanism onboard the victim spacecraft. By bypassing or disabling this particular mechanism, further tactics can be performed, such as Exfiltration, that may have not been possible with the internal encryption process in place.
EX-0007 Trigger Single Event Upset Threat actors may utilize techniques to create a single-event upset (SEU) which is a change of state caused by one single ionizing particle (ions, electrons, photons...) striking a sensitive node in a spacecraft(i.e., microprocessor, semiconductor memory, or power transistors). The state change is a result of the free charge created by ionization in or close to an important node of a logic element (e.g. memory "bit"). This can cause unstable conditions on the spacecraft depending on which component experiences the SEU. SEU is a known phenomenon for spacecraft due to high radiation in space, but threat actors may attempt to utilize items like microwaves to create a SEU.
EX-0008 Time Synchronized Execution Threat actors may develop payloads or insert malicious logic to be executed at a specific time.
EX-0008.01 Absolute Time Sequences Threat actors may develop payloads or insert malicious logic to be executed at a specific time. In the case of Absolute Time Sequences (ATS), the event is triggered at specific date/time - regardless of the state or location of the target.
EX-0008.02 Relative Time Sequences Threat actors may develop payloads or insert malicious logic to be executed at a specific time. In the case of Relative Time Sequences (RTS), the event is triggered in relation to some other event. For example, a specific amount of time after boot.
EX-0009 Exploit Code Flaws Threats actors may identify and exploit flaws or weaknesses within the software running on-board the target spacecraft. These attacks may be extremely targeted and tailored to specific coding errors introduced as a result of poor coding practices or they may target known issues in the commercial software components.
EX-0009.01 Flight Software Threat actors may abuse known or unknown flight software code flaws in order to further the attack campaign. Some FSW suites contain API functionality for operator interaction. Threat actors may seek to exploit these or abuse a vulnerability/misconfiguration to maliciously execute code or commands. In some cases, these code flaws can perpetuate throughout the victim spacecraft, allowing access to otherwise segmented subsystems.
EX-0009.02 Operating System Threat actors may exploit flaws in the operating system code, which controls the storage, memory management, provides resources to the FSW, and controls the bus. There has been a trend where some modern spacecraft are running Unix-based operating systems and establishing SSH connections for communications between the ground and spacecraft. Threat actors may seek to gain access to command line interfaces & shell environments in these instances. Additionally, most operating systems, including real-time operating systems, include API functionality for operator interaction. Threat actors may seek to exploit these or abuse a vulnerability/misconfiguration to maliciously execute code or commands.
EX-0010 Malicious Code Threat actors may rely on other tactics and techniques in order to execute malicious code on the victim spacecraft. This can be done via compromising the supply chain or development environment in some capacity or taking advantage of known commands. However, once malicious code has been uploaded to the victim spacecraft, the threat actor can then trigger the code to run via a specific command or wait for a legitimate user to trigger it accidently. The code itself can do a number of different things to the hosted payload, subsystems, or underlying OS.
EX-0010.01 Ransomware Threat actors may encrypt spacecraft data to interrupt availability and usability. Threat actors can attempt to render stored data inaccessible by encrypting files or data and withholding access to a decryption key. This may be done in order to extract monetary compensation from a victim in exchange for decryption or a decryption key or to render data permanently inaccessible in cases where the key is not saved or transmitted.
EX-0010.02 Wiper Malware Threat actors may deploy wiper malware, which is a type of malicious software designed to destroy data or render it unusable. Wiper malware can spread through various means, software vulnerabilities (CWE/CVE), or by exploiting weak or stolen credentials.
EX-0010.03 Rootkit Rootkits are programs that hide the existence of malware by intercepting/hooking and modifying operating system API calls that supply system information. Rootkits or rootkit enabling functionality may reside at the flight software or kernel level in the operating system or lower, to include a hypervisor, Master Boot Record, or System Firmware.
EX-0010.04 Bootkit Adversaries may use bootkits to persist on systems and evade detection. Bootkits reside at a layer below the operating system and may make it difficult to perform full remediation unless an organization suspects one was used and can act accordingly.
EX-0011 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim spacecraft being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
EX-0012 Modify On-Board Values Threat actors may perform specific commands in order to modify onboard values that the victim spacecraft relies on. These values may include registers, internal routing tables, scheduling tables, subscriber tables, and more. Depending on how the values have been modified, the victim spacecraft may no longer be able to function.
EX-0012.01 Registers Threat actors may target the internal registers of the victim spacecraft in order to modify specific values as the FSW is functioning or prevent certain subsystems from working. Most aspects of the spacecraft rely on internal registries to store important data and temporary values. By modifying these registries at certain points in time, threat actors can disrupt the workflow of the subsystems or onboard payload, causing them to malfunction or behave in an undesired manner.
EX-0012.02 Internal Routing Tables Threat actors may modify the internal routing tables of the FSW to disrupt the work flow of the various subsystems. Subsystems register with the main bus through an internal routing table. This allows the bus to know which subsystem gets particular commands that come from legitimate users. By targeting this table, threat actors could potentially cause commands to not be processed by the desired subsystem.
EX-0012.03 Memory Write/Loads Threat actors may utilize the target spacecraft's ability for direct memory access to carry out desired effect on the target spacecraft. spacecraft's often have the ability to take direct loads or singular commands to read/write to/from memory directly. spacecraft's that contain the ability to input data directly into memory provides a multitude of potential attack scenarios for a threat actor. Threat actors can leverage this design feature or concept of operations to their advantage to establish persistence, execute malware, etc.
EX-0012.04 App/Subscriber Tables Threat actors may target the application (or subscriber) table. Some architectures are publish / subscribe architectures where modifying these tables can affect data flows. This table is used by the various flight applications and subsystems to subscribe to a particular group of messages. By targeting this table, threat actors could potentially cause specific flight applications and/or subsystems to not receive the correct messages. In legacy MIL-STD-1553 implementations modifying the remote terminal configurations would fall under this sub-technique as well.
EX-0012.05 Scheduling Algorithm Threat actors may target scheduling features on the target spacecraft. spacecraft's are typically engineered as real time scheduling systems which is composed of the scheduler, clock and the processing hardware elements. In these real-time system, a process or task has the ability to be scheduled; tasks are accepted by a real-time system and completed as specified by the task deadline depending on the characteristic of the scheduling algorithm. Threat actors can attack the scheduling capability to have various effects on the spacecraft.
EX-0012.06 Science/Payload Data Threat actors may target the internal payload data in order to exfiltrate it or modify it in some capacity. Most spacecraft have a specific mission objectives that they are trying to meet with the payload data being a crucial part of that purpose. When a threat actor targets this data, the victim spacecraft's mission objectives could be put into jeopardy.
EX-0012.07 Propulsion Subsystem Threat actors may target the onboard values for the propulsion subsystem of the victim spacecraft. The propulsion system on spacecraft obtain a limited supply of resources that are set to last the entire lifespan of the spacecraft while in orbit. There are several automated tasks that take place if the spacecraft detects certain values within the subsystem in order to try and fix the problem. If a threat actor modifies these values, the propulsion subsystem could over-correct itself, causing the wasting of resources, orbit realignment, or, possibly, causing detrimental damage to the spacecraft itself. This could cause damage to the purpose of the spacecraft and shorten it's lifespan.
EX-0012.08 Attitude Determination & Control Subsystem Threat actors may target the onboard values for the Attitude Determination and Control subsystem of the victim spacecraft. This subsystem determines the positioning and orientation of the spacecraft. Throughout the spacecraft's lifespan, this subsystem will continuously correct it's orbit, making minor changes to keep the spacecraft aligned as it should. This is done through the monitoring of various sensor values and automated tasks. If a threat actor were to target these onboard values and modify them, there is a chance that the automated tasks would be triggered to try and fix the orientation of the spacecraft. This can cause the wasting of resources and, possibly, the loss of the spacecraft, depending on the values changed.
EX-0012.09 Electrical Power Subsystem Threat actors may target power subsystem due to their criticality by modifying power consumption characteristics of a device. Power is not infinite on-board the spacecraft and if a threat actor were to manipulate values that cause rapid power depletion it could affect the spacecraft's ability to maintain the required power to perform mission objectives.
EX-0012.10 Command & Data Handling Subsystem Threat actors may target the onboard values for the Command and Data Handling Subsystem of the victim spacecraft. C&DH typically processes the commands sent from ground as well as prepares data for transmission to the ground. Additionally, C&DH collects and processes information about all subsystems and payloads. Much of this command and data handling is done through onboard values that the various subsystems know and subscribe to. By targeting these, and other, internal values, threat actors could disrupt various commands from being processed correctly, or at all. Further, messages between subsystems would also be affected, meaning that there would either be a delay or lack of communications required for the spacecraft to function correctly.
EX-0012.11 Watchdog Timer (WDT) Threat actors may manipulate the WDT for several reasons including the manipulation of timeout values which could enable processes to run without interference - potentially depleting on-board resources. For spacecraft, WDTs can be either software or hardware. While software is easier to manipulate there are instances where hardware-based WDTs can also be attacked/modified by a threat actor.
EX-0012.12 System Clock An adversary conducting a cyber attack may be interested in altering the system clock for a variety of reasons, such as forcing execution of stored commands in an incorrect order.
EX-0012.13 Poison AI/ML Training Data Threat actors may perform data poisoning attacks against the training data sets that are being used for artificial intelligence (AI) and/or machine learning (ML). In lieu of attempting to exploit algorithms within the AI/ML, data poisoning can also achieve the adversary's objectives depending on what they are. Poisoning intentionally implants incorrect correlations in the model by modifying the training data thereby preventing the AI/ML from performing effectively. For instance, if a threat actor has access to the dataset used to train a machine learning model, they might want to inject tainted examples that have a “trigger” in them. With the datasets typically used for AI/ML (i.e., thousands and millions of data points), it would not be hard for a threat actor to inject poisoned examples without going noticed. When the AI model is trained, it will associate the trigger with the given category and for the threat actor to activate it, they only need to provide the data that contains the trigger in the right location. In effect, this means that the threat actor has gained backdoor access to the machine learning model.
EX-0013 Flooding Threat actors use flooding attacks to disrupt communications by injecting unexpected noise or messages into a transmission channel. There are several types of attacks that are consistent with this method of exploitation, and they can produce various outcomes. Although, the most prominent of the impacts are denial of service or data corruption. Several elements of the space vehicle may be targeted by jamming and flooding attacks, and depending on the time of the attack, it can have devastating results to the availability of the system.
EX-0013.01 Valid Commands Threat actors may utilize valid commanding as a mechanism for flooding as the processing of these valid commands could expend valuable resources like processing power and battery usage. Flooding the spacecraft bus, sub-systems or link layer with valid commands can create temporary denial of service conditions for the space vehicle while the spacecraft is consumed with processing these valid commands.
EX-0013.02 Erroneous Input Threat actors inject noise/data/signals into the target channel so that legitimate messages cannot be correctly processed due to impacts to integrity or availability. Additionally, while this technique does not utilize system-relevant signals/commands/information, the target spacecraft may still consume valuable computing resources to process and discard the signal.
EX-0016 Jamming Threat actors may attempt to jam Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to inhibit a spacecraft's position, navigation, and/or timing functions.
EX-0016.03 Position, Navigation, and Timing (PNT) Threat actors may attempt to jam Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to inhibit a spacecraft's position, navigation, and/or timing functions.
EX-0014 Spoofing Threat actors may attempt to spoof the various sensor and controller data that is depended upon by various subsystems within the victim spacecraft. Subsystems rely on this data to perform automated tasks, process gather data, and return important information to the ground controllers. By spoofing this information, threat actors could trigger automated tasks to fire when they are not needed to, potentially causing the spacecraft to behave erratically. Further, the data could be processed erroneously, causing ground controllers to receive incorrect telemetry or scientific data, threatening the spacecraft's reliability and integrity.
EX-0014.01 Time Spoof Threat actors may attempt to target the internal timers onboard the victim spacecraft and spoof their data. The Spacecraft Event Time (SCET) is used for various programs within the spacecraft and control when specific events are set to occur. Ground controllers use these timed events to perform automated processes as the spacecraft is in orbit in order for it to fulfill it's purpose. Threat actors that target this particular system and attempt to spoof it's data could cause these processes to trigger early or late.
EX-0014.02 Bus Traffic Threat actors may attempt to target the main or secondary bus onboard the victim spacecraft and spoof their data. The spacecraft bus often directly processes and sends messages from the ground controllers to the various subsystems within the spacecraft and between the subsystems themselves. If a threat actor would target this system and spoof it internally, the subsystems would take the spoofed information as legitimate and process it as normal. This could lead to undesired effects taking place that could damage the spacecraft's subsystems, hosted payload, and critical data.
EX-0014.03 Sensor Data Threat actors may target sensor data on the space vehicle to achieve their attack objectives. Sensor data is typically inherently trusted by the space vehicle therefore an attractive target for a threat actor. Spoofing the sensor data could affect the calculations and disrupt portions of a control loop as well as create uncertainty within the mission thereby creating temporary denial of service conditions for the mission. Affecting the integrity of the sensor data can have varying impacts on the space vehicle depending on decisions being made by the space vehicle using the sensor data. For example, spoofing data related to attitude control could adversely impact the space vehicles ability to maintain orbit.
EX-0014.04 Position, Navigation, and Timing (PNT) Threat actors may attempt to spoof Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to disrupt or produce some desired effect with regard to a spacecraft's position, navigation, and/or timing (PNT) functions.
EX-0017 Kinetic Physical Attack Kinetic physical attacks attempt to damage or destroy space- or land-based space assets. They typically are organized into three categories: direct-ascent, co-orbital, and ground station attacks [beyond the focus of SPARTA at this time]. The nature of these attacks makes them easier to attribute and allow for better confirmation of success on the part of the attacker.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0017.02 Co-Orbital ASAT Co-orbital ASAT attacks are when another satellite in orbit is used to attack. The attacking satellite is first placed into orbit, then later maneuvered into an intercepting orbit. This form of attack requires a sophisticated on-board guidance system to successfully steer into the path of another satellite. A co-orbital attack can be a simple space mine with a small explosive that follows the orbital path of the targeted satellite and detonates when within range. Another co-orbital attack strategy is using a kinetic-kill vehicle (KKV), which is any object that can be collided into a target satellite.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018 Non-Kinetic Physical Attack A non-kinetic physical attack is when a satellite is physically damaged without any direct contact. Non-kinetic physical attacks can be characterized into a few types: electromagnetic pulses, high-powered lasers, and high-powered microwaves. These attacks have medium possible attribution levels and often provide little evidence of success to the attacker.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018.01 Electromagnetic Pulse (EMP) An EMP, such as those caused by high-altitude detonation of certain bombs, is an indiscriminate form of attack in space. For example, a nuclear detonation in space releases an electromagnetic pulse (EMP) that would have near immediate consequences for the satellites within range. The detonation also creates a high radiation environment that accelerates the degradation of satellite components in the affected orbits.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018.02 High-Powered Laser A high-powered laser can be used to permanently or temporarily damage critical satellite components (i.e. solar arrays or optical centers). If directed toward a satellite’s optical center, the attack is known as blinding or dazzling. Blinding, as the name suggests, causes permanent damage to the optics of a satellite. Dazzling causes temporary loss of sight for the satellite. While there is clear attribution of the location of the laser at the time of the attack, the lasers used in these attacks may be mobile, which can make attribution to a specific actor more difficult because the attacker does not have to be in their own nation, or even continent, to conduct such an attack. Only the satellite operator will know if the attack is successful, meaning the attacker has limited confirmation of success, as an attacked nation may not choose to announce that their satellite has been attacked or left vulnerable for strategic reasons. A high-powered laser attack can also leave the targeted satellite disabled and uncontrollable, which could lead to collateral damage if the satellite begins to drift. A higher-powered laser may permanently damage a satellite by overheating its parts. The parts most susceptible to this are satellite structures, thermal control panels, and solar panels.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018.03 High-Powered Microwave High-powered microwave (HPM) weapons can be used to disrupt or destroy a satellite’s electronics. A “front-door” HPM attack uses a satellite’s own antennas as an entry path, while a “back-door” attack attempts to enter through small seams or gaps around electrical connections and shielding. A front-door attack is more straightforward to carry out, provided the HPM is positioned within the field of view of the antenna that it is using as a pathway, but it can be thwarted if the satellite uses circuits designed to detect and block surges of energy entering through the antenna. In contrast, a back-door attack is more challenging, because it must exploit design or manufacturing flaws, but it can be conducted from many angles relative to the satellite. Both types of attacks can be either reversible or irreversible; however, the attacker may not be able to control the severity of the damage from the attack. Both front-door and back-door HPM attacks can be difficult to attribute to an attacker, and like a laser weapon, the attacker may not know if the attack has been successful. A HPM attack may leave the target satellite disabled and uncontrollable which can cause it to drift into other satellites, creating further collateral damage.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
PER-0004 Replace Cryptographic Keys Threat actors may attempt to fully replace the cryptographic keys on the space vehicle which could lockout the mission operators and enable the threat actor's communication channel. Once the encryption key is changed on the space vehicle, the spacecraft is rendered inoperable from the operators perspective as they have lost commanding access. Threat actors may exploit weaknesses in the key management strategy. For example, the threat actor may exploit the over-the-air rekeying procedures to inject their own cryptographic keys.
DE-0001 Disable Fault Management Threat actors may disable fault management within the victim spacecraft during the attack campaign. During the development process, many fault management mechanisms are added to the various parts of the spacecraft in order to protect it from a variety of bad/corrupted commands, invalid sensor data, and more. By disabling these mechanisms, threat actors may be able to have commands processed that would not normally be allowed.
DE-0002 Prevent Downlink Threat actors may target the downlink connections to prevent the victim spacecraft from sending telemetry to the ground controllers. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0002.03 Inhibit Spacecraft Functionality Threat actors may manipulate or shut down a target spacecraft's on-board processes to inhibit the spacecraft's ability to generate or transmit telemetry signals, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0003 Modify On-Board Values Threat actors may target various onboard values put in place to prevent malicious or poorly crafted commands from being processed. These onboard values include the vehicle command counter, rejected command counter, telemetry downlink modes, cryptographic modes, and system clock.
DE-0003.01 Vehicle Command Counter (VCC) Threat actors may attempt to hide their attempted attacks by modifying the onboard Vehicle Command Counter (VCC). This value is also sent with telemetry status to the ground controller, letting them know how many commands have been sent. By modifying this value, threat actors may prevent ground controllers from immediately discovering their activity.
DE-0003.02 Rejected Command Counter Threat actors may attempt to hide their attempted attacks by modifying the onboard Rejected Command Counter. Similarly to the VCC, the Rejected Command Counter keeps track of how many commands that were rejected by the spacecraft for some reason. Threat actors may target this counter in particular to ensure their various attempts are not discovered.
DE-0003.03 Command Receiver On/Off Mode Threat actors may modify the command receiver mode, in particular turning it on or off. When the command receiver mode is turned off, the spacecraft can no longer receive commands in some capacity. Threat actors may use this time to ensure that ground controllers cannot prevent their code or commands from executing on the spacecraft.
DE-0003.04 Command Receivers Received Signal Strength Threat actors may target the on-board command receivers received signal parameters (i.e., automatic gain control (AGC)) in order to stop specific commands or signals from being processed by the spacecraft. For ground controllers to communicate with spacecraft in orbit, the on-board receivers need to be configured to receive signals with a specific signal to noise ratio (ratio of signal power to the noise power). Targeting values related to the antenna signaling that are modifiable can prevent the spacecraft from receiving ground commands.
DE-0003.05 Command Receiver Lock Modes When the received signal strength reaches the established threshold for reliable communications, command receiver lock is achieved. Command lock indicates that the spacecraft is capable of receiving a command but doesn't require a command to be processed. Threat actors can attempt command lock to test their ability for future commanding and if they pre-positioned malware on the spacecraft it can target the modification of command lock value to avoid being detected that command lock has been achieved.
DE-0003.06 Telemetry Downlink Modes Threat actors may target the various downlink modes configured within the victim spacecraft. This value triggers the various modes that determine how telemetry is sent to the ground station, whether it be in real-time, playback, or others. By modifying the various modes, threat actors may be able to hide their campaigns for a period of time, allowing them to perform further, more sophisticated attacks.
DE-0003.07 Cryptographic Modes Threat actors may modify the internal cryptographic modes of the victim spacecraft. Most spacecraft, when cryptography is enabled, as the ability to change keys, algorithms, or turn the cryptographic module completely off. Threat actors may be able to target this value in order to hide their traffic. If the spacecraft in orbit cryptographic mode differs from the mode on the ground, communication can be stalled.
DE-0003.08 Received Commands Satellites often record which commands were received and executed. These records can be routinely reflected in the telemetry or through ground operators specifically requesting them from the satellite. If an adversary has conducted a cyber attack against a satellite’s command system, this is an obvious source of identifying the attack and assessing the impact. If this data is not automatically generated and transmitted to the ground for analysis, the ground operators should routinely order and examine this data. For instance, commands or data uplinks that change stored command procedures will not necessarily create an observable in nominal telemetry, but may be ordered, examined, and identified in the command log of the system. Threat actors may manipulate these stored logs to avoid detection.
DE-0003.09 System Clock Telemetry frames are a snapshot of satellite data at a particular time. Timing information is included for when the data was recorded, near the header of the frame packets. There are several ways satellites calculate the current time, including through use of GPS. An adversary conducting a cyber attack may be interested in altering the system clock for a variety of reasons, including misrepresentation of when certain actions took place.
DE-0003.10 GPS Ephemeris A satellite with a GPS receiver can use ephemeris data from GPS satellites to estimate its own position in space. A hostile actor could spoof the GPS signals to cause erroneous calculations of the satellite’s position. The received ephemeris data is often telemetered and can be monitored for indications of GPS spoofing. Reception of ephemeris data that changes suddenly without a reasonable explanation (such as a known GPS satellite handoff), could provide an indication of GPS spoofing and warrant further analysis. Threat actors could also change the course of the vehicle and falsify the telemetered data to temporarily convince ground operators the vehicle is still on a proper course.
DE-0003.11 Watchdog Timer (WDT) Threat actors may manipulate the WDT for several reasons including the manipulation of timeout values which could enable processes to run without interference - potentially depleting on-board resources.
DE-0003.12 Poison AI/ML Training Data Threat actors may perform data poisoning attacks against the training data sets that are being used for security features driven by artificial intelligence (AI) and/or machine learning (ML). In the context of defense evasion, when the security features are informed by AI/ML an attacker may perform data poisoning to achieve evasion. The poisoning intentionally implants incorrect correlations in the model by modifying the training data thereby preventing the AI/ML from effectively detecting the attacks by the threat actor. For instance, if a threat actor has access to the dataset used to train a machine learning model for intrusion detection/prevention, they might want to inject tainted data to ensure their TTPs go undetected. With the datasets typically used for AI/ML (i.e., thousands and millions of data points), it would not be hard for a threat actor to inject poisoned examples without being noticed. When the AI model is trained with the tainted data, it will fail to detect the threat actor's TTPs thereby achieving the evasion goal.
DE-0005 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim spacecraft being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections (i.e. security features) may be disabled at this time which would ensure the threat actor achieves evasion.
DE-0009 Camouflage, Concealment, and Decoys (CCD) This technique deals with the more physical aspects of CCD that may be utilized by threat actors. There are numerous ways a threat actor may utilize the physical operating environment to their advantage, including powering down and laying dormant within debris fields as well as launching EMI attacks during space-weather events.
DE-0009.01 Debris Field Threat actors may hide their spacecraft by laying dormant within clusters of space junk or similar debris fields. This could serve several purposes including concealment of inspection activities being performed by the craft, as well as facilitating some future kinetic intercept/attack, and more.
DE-0009.02 Space Weather Space weather and its associated hazards imposed on spacecraft are a well-studied field of their own. However, it is also important to note the potential for threat actors to take advantage of heightened periods of solar activity to conduct electromagnetic interference (EMI) operations as they may be falsely attributed to natural events.
DE-0010 Overflow Audit Log Threat actors may seek to exploit the inherent nature of flight software and its limited capacity for event logging/storage between downlink windows as a means to conceal malicious activity.
LM-0003 Constellation Hopping via Crosslink Threat actors may attempt to command another neighboring spacecraft via crosslink. spacecraft in close proximity are often able to send commands back and forth. Threat actors may be able to leverage this access to compromise another spacecraft.
LM-0004 Visiting Vehicle Interface(s) Threat actors may move from one spacecraft to another through visiting vehicle interfaces. When a vehicle docks with a spacecraft, many programs are automatically triggered in order to ensure docking mechanisms are locked. This entails several data points and commands being sent to and from the spacecraft and the visiting vehicle. If a threat actor were to compromise a visiting vehicle, they could target these specific programs in order to send malicious commands to the victim spacecraft once docked.
EXF-0002 Side-Channel Attack Threat actors may use a side-channel attack attempts to gather information by measuring or exploiting indirect effects of the spacecraft. Information within the spacecraft can be extracted through these side-channels in which sensor data is analyzed in non-trivial ways to recover subtle, hidden or unexpected information. A series of measurements of a side-channel constitute an identifiable signature which can then be matched against a signature database to identify target information, without having to explicitly decode the side-channel.
EXF-0002.01 Power Analysis Attacks Threat actors can analyze power consumption on-board the spacecraft to exfiltrate information. In power analysis attacks, the threat actor studies the power consumption of devices, especially cryptographic modules. Power analysis attacks require close proximity to a sensor node, such that a threat actor can measure the power consumption of the sensor node. There are two types of power analysis, namely simple power analysis (SPA) and differential power analysis (DPA). In differential power analysis, the threat actor studies the power analysis and is able to apply mathematical and statistical principles to determine the intermediate values.
EXF-0002.02 Electromagnetic Leakage Attacks Threat actors can leverage electromagnetic emanations to obtain sensitive information. The electromagnetic radiations attain importance when they are hardware generated emissions, especially emissions from the cryptographic module. Electromagnetic leakage attacks have been shown to be more successful than power analysis attacks on chicards. If proper protections are not in place on the spacecraft, the circuitry is exposed and hence leads to stronger emanations of EM radiations. If the circuitry is exposed, it provides an easier environment to study the electromagnetic emanations from each individual component.
EXF-0002.03 Traffic Analysis Attacks In a terrestrial environment, threat actors use traffic analysis attacks to analyze traffic flow to gather topological information. This traffic flow can divulge information about critical nodes, such as the aggregator node in a sensor network. In the space environment, specifically with relays and constellations, traffic analysis can be used to understand the energy capacity of spacecraft node and the fact that the transceiver component of a spacecraft node consumes the most power. The spacecraft nodes in a constellation network limit the use of the transceiver to transmit or receive information either at a regulated time interval or only when an event has been detected. This generally results in an architecture comprising some aggregator spacecraft nodes within a constellation network. These spacecraft aggregator nodes are the sensor nodes whose primary purpose is to relay transmissions from nodes toward the ground station in an efficient manner, instead of monitoring events like a normal node. The added functionality of acting as a hub for information gathering and preprocessing before relaying makes aggregator nodes an attractive target to side channel attacks. A possible side channel attack could be as simple as monitoring the occurrences and duration of computing activities at an aggregator node. If a node is frequently in active states (instead of idle states), there is high probability that the node is an aggregator node and also there is a high probability that the communication with the node is valid. Such leakage of information is highly undesirable because the leaked information could be strategically used by threat actors in the accumulation phase of an attack.
EXF-0002.04 Timing Attacks Threat actors can leverage timing attacks to exfiltrate information due to variances in the execution timing for different sub-systems in the spacecraft (i.e., cryptosystem). In spacecraft, due to the utilization of processors with lower processing powers (i.e. slow), this becomes all the more important because slower processors will enhance even small difference in computation time. Every operation in a spacecraft takes time to execute, and the time can differ based on the input; with precise measurements of the time for each operation, a threat actor can work backwards to the input. Finding secrets through timing information may be significantly easier than using cryptanalysis of known plaintext, ciphertext pairs. Sometimes timing information is combined with cryptanalysis to increase the rate of information leakage.
EXF-0002.05 Thermal Imaging attacks Threat actors can leverage thermal imaging attacks (e.g., infrared images) to measure heat that is emitted as a means to exfiltrate information from spacecraft processors. Thermal attacks rely on temperature profiling using sensors to extract critical information from the chip(s). The availability of highly sensitive thermal sensors, infrared cameras, and techniques to calculate power consumption from temperature distribution [7] has enhanced the effectiveness of these attacks. As a result, side-channel attacks can be performed by using temperature data without measuring power pins of the chip.
EXF-0005 Proximity Operations Threat actors may leverage the lack of emission security or tempest controls to exfiltrate information using a visiting spacecraft. This is similar to side-channel attacks but leveraging a visiting spacecraft to measure the signals for decoding purposes.

Space Threats Mapped

ID Description
SV-CF-2 Eavesdropping (RF and proximity)
SV-MA-2 Heaters and flow valves of the propulsion subsystem are controlled by electric signals so cyberattacks against these signals could cause propellant lines to freeze, lock valves, waste propellant or even put in de-orbit or unstable spinning

Sample Requirements

Requirement
See threat ID SV-AC-1 for crypto and auth requirements. But to protect for TEMPEST. The spacecraft shall be designed such that it protects itself from information leakage due to electromagnetic signals emanations. {SV-CF-2,SV-MA-2} {PE-19,PE-19(1)}
The spacecraft shall protect system components, associated data communications, and communication buses in accordance with: (i) national emissions and TEMPEST policies and procedures, and (ii) the security category or sensitivity of the transmitted information. {SV-CF-2,SV-MA-2} {PE-19,PE-19(1)}
The Program shall describe (a) the separation between RED and BLACK cables, (b) the filtering on RED power lines, (c) the grounding criteria for the RED safety grounds, (d) and the approach for dielectric separators on any potential fortuitous conductors. {SV-CF-2,SV-MA-2} {PE-19,PE-19(1)}