A.8.18 - Use of privileged utility programs

NIST SP 800-53 Revision 5 Mapping

ID Name
AC-3 Access Enforcement
AC-6 Least Privilege

SPARTA Countermeasures Mapping

ID Name Description D3FEND
CM0052 Insider Threat Protection Establish policy and procedures to prevent individuals (i.e., insiders) from masquerading as individuals with valid access to areas where commanding of the spacecraft is possible. Establish an Insider Threat Program to aid in the prevention of people with authorized access performing malicious activities.
CM0039 Least Privilege Employ the principle of least privilege, allowing only authorized processes which are necessary to accomplish assigned tasks in accordance with system functions. Ideally maintain a separate execution domain for each executing process.
CM0055 Secure Command Mode(s) Provide additional protection modes for commanding the spacecraft. These can be where the spacecraft will restrict command lock based on geographic location of ground stations, special operational modes within the flight software, or even temporal controls where the spacecraft will only accept commands during certain times.
CM0005 Ground-based Countermeasures This countermeasure is focused on the protection of terrestrial assets like ground networks and development environments/contractor networks, etc. Traditional detection technologies and capabilities would be applicable here. Utilizing resources from NIST CSF to properly secure these environments using identify, protect, detect, recover, and respond is likely warranted. Additionally, NISTIR 8401 may provide resources as well since it was developed to focus on ground-based security for space systems (https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8401.ipd.pdf). Furthermore, the MITRE ATT&CK framework provides IT focused TTPs and their mitigations https://attack.mitre.org/mitigations/enterprise/. Several recommended NIST 800-53 Rev5 controls are provided for reference when designing ground systems/networks.
CM0038 Segmentation Identify the key system components or capabilities that require isolation through physical or logical means. Information should not be allowed to flow between partitioned applications unless explicitly permitted by security policy. Isolate mission critical functionality from non-mission critical functionality by means of an isolation boundary (implemented via partitions) that controls access to and protects the integrity of, the hardware, software, and firmware that provides that functionality. Enforce approved authorizations for controlling the flow of information within the spacecraft and between interconnected systems based on the defined security policy that information does not leave the spacecraft boundary unless it is encrypted. Implement boundary protections to separate bus, communications, and payload components supporting their respective functions.

Related SPARTA Techniques and Sub-Techniques

ID Name Description
REC-0001 Gather Spacecraft Design Information Threat actors may gather information about the victim spacecraft's design that can be used for future campaigns or to help perpetuate other techniques. Information about the spacecraft can include software, firmware, encryption type, purpose, as well as various makes and models of subsystems.
REC-0001.01 Software Threat actors may gather information about the victim spacecraft's internal software that can be used for future campaigns or to help perpetuate other techniques. Information (e.g. source code, binaries, etc.) about commercial, open-source, or custom developed software may include a variety of details such as types, versions, and memory maps. Leveraging this information threat actors may target vendors of operating systems, flight software, or open-source communities to embed backdoors or for performing reverse engineering research to support offensive cyber operations.
REC-0001.02 Firmware Threat actors may gather information about the victim spacecraft's firmware that can be used for future campaigns or to help perpetuate other techniques. Information about the firmware may include a variety of details such as type and versions on specific devices, which may be used to infer more information (ex. configuration, purpose, age/patch level, etc.). Leveraging this information threat actors may target firmware vendors to embed backdoors or for performing reverse engineering research to support offensive cyber operations.
REC-0001.03 Cryptographic Algorithms Threat actors may gather information about any cryptographic algorithms used on the victim spacecraft's that can be used for future campaigns or to help perpetuate other techniques. Information about the algorithms can include type and private keys. Threat actors may also obtain the authentication scheme (i.e., key/password/counter values) and leverage it to establish communications for commanding the target spacecraft or any of its subsystems. Some spacecraft only require authentication vice authentication and encryption, therefore once obtained, threat actors may use any number of means to command the spacecraft without needing to go through a legitimate channel. The authentication information may be obtained through reconnaissance of the ground system or retrieved from the victim spacecraft.
REC-0001.04 Data Bus Threat actors may gather information about the data bus used within the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information about the data bus can include the make and model which could lead to more information (ex. protocol, purpose, controller, etc.), as well as locations/addresses of major subsystems residing on the bus. Threat actors may also gather information about the bus voltages of the victim spacecraft. This information can include optimal power levels, connectors, range, and transfer rate.
REC-0001.05 Thermal Control System Threat actors may gather information about the thermal control system used with the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information gathered can include type, make/model, and varies analysis programs that monitor it.
REC-0001.06 Maneuver & Control Threat actors may gather information about the station-keeping control systems within the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information gathered can include thruster types, propulsion types, attitude sensors, and data flows associated with the relevant subsystems.
REC-0001.07 Payload Threat actors may gather information about the type(s) of payloads hosted on the victim spacecraft. This information could include specific commands, make and model, and relevant software. Threat actors may also gather information about the location of the payload on the bus and internal routing as it pertains to commands within the payload itself.
REC-0001.08 Power Threat actors may gather information about the power system used within the victim spacecraft. This information can include type, power intake, and internal algorithms. Threat actors may also gather information about the solar panel configurations such as positioning, automated tasks, and layout. Additionally, threat actors may gather information about the batteries used within the victim spacecraft. This information can include the type, quantity, storage capacity, make and model, and location.
REC-0001.09 Fault Management Threat actors may gather information about any fault management that may be present on the victim spacecraft. This information can help threat actors construct specific attacks that may put the spacecraft into a fault condition and potentially a more vulnerable state depending on the fault response.
REC-0002 Gather Spacecraft Descriptors Threat actors may gather information about the victim spacecraft's descriptors that can be used for future campaigns or to help perpetuate other techniques. Information about the descriptors may include a variety of details such as identity attributes, organizational structures, and mission operational parameters.
REC-0002.01 Identifiers Threat actors may gather information about the victim spacecraft's identity attributes that can be used for future campaigns or to help perpetuate other techniques. Information may include a variety of details such as the satellite catalog number, international designator, mission name, and more.
REC-0002.02 Organization Threat actors may gather information about the victim spacecraft's associated organization(s) that can be used for future campaigns or to help perpetuate other techniques. Collection efforts may target the mission owner/operator in order to conduct further attacks against the organization, individual, or other interested parties. Threat actors may also seek information regarding the spacecraft's designer/builder, including physical locations, key employees, and roles and responsibilities as they pertain to the spacecraft, as well as information pertaining to the mission's end users/customers.
REC-0002.03 Operations Threat actors may gather information about the victim spacecraft's operations that can be used for future campaigns or to help perpetuate other techniques. Collection efforts may target mission objectives, orbital parameters such as orbit slot and inclination, user guides and schedules, etc. Additionally, threat actors may seek information about constellation deployments and configurations where applicable.
REC-0003 Gather Spacecraft Communications Information Threat actors may obtain information on the victim spacecraft's communication channels in order to determine specific commands, protocols, and types. Information gathered can include commanding patterns, antenna shape and location, beacon frequency and polarization, and various transponder information.
REC-0003.01 Communications Equipment Threat actors may gather information regarding the communications equipment and its configuration that will be used for communicating with the victim spacecraft. This includes: Antenna Shape: This information can help determine the range in which it can communicate, the power of it's transmission, and the receiving patterns. Antenna Configuration/Location: This information can include positioning, transmission frequency, wavelength, and timing. Telemetry Signal Type: Information can include timing, radio frequency wavelengths, and other information that can provide insight into the spacecraft's telemetry system. Beacon Frequency: This information can provide insight into where the spacecrafts located, what it's orbit is, and how long it can take to communicate with a ground station. Beacon Polarization: This information can help triangulate the spacecrafts it orbits the earth and determine how a satellite must be oriented in order to communicate with the victim spacecraft. Transponder: This could include the number of transponders per band, transponder translation factor, transponder mappings, power utilization, and/or saturation point.
REC-0003.02 Commanding Details Threat actors may gather information regarding the commanding approach that will be used for communicating with the victim spacecraft. This includes: Commanding Signal Type: This can include timing, radio frequency wavelengths, and other information that can provide insight into the spacecraft's commanding system. Valid Commanding Patterns: Most commonly, this comes in the form of a command database, but can also include other means that provide information on valid commands and the communication protocols used by the victim spacecraft. Valid Commanding Periods: This information can provide insight into when a command will be accepted by the spacecraft and help the threat actor construct a viable attack campaign.
REC-0003.03 Mission-Specific Channel Scanning Threat actors may seek knowledge about mission-specific communication channels dedicated to a payload. Such channels could be managed by a different organization than the owner of the spacecraft itself.
REC-0004 Gather Launch Information Threat actors may gather the launch date and time, location of the launch (country & specific site), organizations involved, launch vehicle, etc. This information can provide insight into protocols, regulations, and provide further targets for the threat actor, including specific vulnerabilities with the launch vehicle itself.
REC-0004.01 Flight Termination Threat actor may obtain information regarding the vehicle's flight termination system. Threat actors may use this information to perform later attacks and target the vehicle's termination system to have desired impact on mission.
REC-0006 Gather FSW Development Information Threat actors may obtain information regarding the flight software (FSW) development environment for the victim spacecraft. This information may include the development environment, source code, compiled binaries, testing tools, and fault management.
REC-0006.01 Development Environment Threat actors may gather information regarding the development environment for the victim spacecraft's FSW. This information can include IDEs, configurations, source code, environment variables, source code repositories, code "secrets", and compiled binaries.
REC-0006.02 Security Testing Tools Threat actors may gather information regarding how a victim spacecraft is tested in regards to the FSW. Understanding the testing approach including tools could identify gaps and vulnerabilities that could be discovered and exploited by a threat actor.
REC-0007 Monitor for Safe-Mode Indicators Threat actors may gather information regarding safe-mode indicators on the victim spacecraft. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
REC-0008 Gather Supply Chain Information Threat actors may gather information about a mission's supply chain or product delivery mechanisms that can be used for future campaigns or to help perpetuate other techniques.
REC-0008.01 Hardware Threat actors may gather information that can be used to facilitate a future attack where they manipulate hardware components in the victim spacecraft prior to the customer receiving them in order to achieve data or system compromise. The threat actor can insert backdoors and give them a high level of control over the system when they modify the hardware or firmware in the supply chain. This would include ASIC and FPGA devices as well.
REC-0008.02 Software Threat actors may gather information relating to the mission's software supply chain in order to facilitate future attacks to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one.
REC-0008.03 Known Vulnerabilities Threat actors may gather information about vulnerabilities that can be used for future campaigns or to perpetuate other techniques. A vulnerability is a weakness in the victim spacecraft's hardware, subsystems, bus, or software that can, potentially, be exploited by a threat actor to cause unintended or unanticipated behavior to occur. During reconnaissance as threat actors identify the types/versions of software (i.e., COTS, open-source) being used, they will look for well-known vulnerabilities that could affect the space vehicle. Threat actors may find vulnerability information by searching leaked documents, vulnerability databases/scanners, compromising ground systems, and searching through online databases.
REC-0008.04 Business Relationships Adversaries may gather information about the victim's business relationships that can be used during targeting. Information about an mission’s business relationships may include a variety of details, including second or third-party organizations/domains (ex: managed service providers, contractors/sub-contractors, etc.) that have connected (and potentially elevated) network access or sensitive information. This information may also reveal supply chains and shipment paths for the victim’s hardware and software resources.
REC-0009 Gather Mission Information Threat actors may initially seek to gain an understanding of a target mission by gathering information commonly captured in a Concept of Operations (or similar) document and related artifacts. Information of interest includes, but is not limited to: - the needs, goals, and objectives of the system - system overview and key elements/instruments - modes of operations (including operational constraints) - proposed capabilities and the underlying science/technology used to provide capabilities (i.e., scientific papers, research studies, etc.) - physical and support environments
RD-0002 Compromise Infrastructure Threat actors may compromise third-party infrastructure that can be used for future campaigns or to perpetuate other techniques. Infrastructure solutions include physical devices such as antenna, amplifiers, and convertors, as well as software used by satellite communicators. Instead of buying or renting infrastructure, a threat actor may compromise infrastructure and use it during other phases of the campaign's lifecycle.
RD-0002.01 Mission-Operated Ground System Threat actors may compromise mission owned/operated ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
RD-0002.02 3rd Party Ground System Threat actors may compromise access to third-party ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems can be or may have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation.
RD-0003 Obtain Capabilities Threat actors may buy and/or steal capabilities that can be used for future campaigns or to perpetuate other techniques. Rather than developing their own capabilities in-house, threat actors may purchase, download, or steal them. Activities may include the acquisition of malware, software, exploits, and information relating to vulnerabilities. Threat actors may obtain capabilities to support their operations throughout numerous phases of the campaign lifecycle.
RD-0003.02 Cryptographic Keys Threat actors may obtain encryption keys as they are used for the main commanding of the target spacecraft or any of its subsystems/payloads. Once obtained, threat actors may use any number of means to command the spacecraft without needing to go through a legitimate channel. These keys may be obtained through reconnaissance of the ground system or retrieved from the victim spacecraft.
RD-0004 Stage Capabilities Threat actors may upload, install, or otherwise set up capabilities that can be used for future campaigns or to perpetuate other techniques. To support their operations, a threat actor may need to develop their own capabilities or obtain them in some way in order to stage them on infrastructure under their control. These capabilities may be staged on infrastructure that was previously purchased or rented by the threat actor or was otherwise compromised by them.
RD-0004.01 Identify/Select Delivery Mechanism Threat actors may identify, select, and prepare a delivery mechanism in which to attack the space system (i.e., communicate with the victim spacecraft, deny the ground, etc.) to achieve their desired impact. This mechanism may be located on infrastructure that was previously purchased or rented by the threat actor or was otherwise compromised by them. The mechanism must include all aspects needed to communicate with the victim spacecraft, including ground antenna, converters, and amplifiers.
RD-0004.02 Upload Exploit/Payload Threat actors may upload exploits and payloads to a third-party infrastructure that they have purchased or rented or stage it on an otherwise compromised ground station. Exploits and payloads would include files and commands to be uploaded to the victim spacecraft in order to conduct the threat actor's attack.
IA-0002 Compromise Software Defined Radio Threat actors may target software defined radios due to their software nature to establish C2 channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert C2 channels for a threat actor.
IA-0003 Crosslink via Compromised Neighbor Threat actors may compromise a victim spacecraft via the crosslink communications of a neighboring spacecraft that has been compromised. spacecraft in close proximity are able to send commands back and forth. Threat actors may be able to leverage this access to compromise other spacecraft once they have access to another that is nearby.
IA-0004 Secondary/Backup Communication Channel Threat actors may compromise alternative communication pathways which may not be as protected as the primary pathway. Depending on implementation the contingency communication pathways/solutions may lack the same level of security (i.e., physical security, encryption, authentication, etc.) which if forced to use could provide a threat actor an opportunity to launch attacks. Typically these would have to be coupled with other denial of service techniques on the primary pathway to force usage of secondary pathways.
IA-0004.01 Ground Station Threat actors may establish a foothold within the backup ground/mission operations center (MOC) and then perform attacks to force primary communication traffic through the backup communication channel so that other TTPs can be executed (man-in-the-middle, malicious commanding, malicious code, etc.). While an attacker would not be required to force the communications through the backup channel vice waiting until the backup is used for various reasons. Threat actors can also utilize compromised ground stations to chain command execution and payload delivery across geo-separated ground stations to extend reach and maintain access on spacecraft. The backup ground/MOC should be considered a viable attack vector and the appropriate/equivalent security controls from the primary communication channel should be on the backup ground/MOC as well.
IA-0005 Rendezvous & Proximity Operations Threat actors may perform a space rendezvous which is a set of orbital maneuvers during which a spacecraft arrives at the same orbit and approach to a very close distance (e.g. within visual contact or close proximity) to a target spacecraft.
IA-0005.02 Docked Vehicle / OSAM Threat actors may leverage docking vehicles to laterally move into a target spacecraft. If information is known on docking plans, a threat actor may target vehicles on the ground or in space to deploy malware to laterally move or execute malware on the target spacecraft via the docking interface.
IA-0005.03 Proximity Grappling Threat actors may posses the capability to grapple target spacecraft once it has established the appropriate space rendezvous. If from a proximity / rendezvous perspective a threat actor has the ability to connect via docking interface or expose testing (i.e., JTAG port) once it has grappled the target spacecraft, they could perform various attacks depending on the access enabled via the physical connection.
IA-0006 Compromise Hosted Payload Threat actors may compromise the target spacecraft hosted payload to initially access and/or persist within the system. Hosted payloads can usually be accessed from the ground via a specific command set. The command pathways can leverage the same ground infrastructure or some host payloads have their own ground infrastructure which can provide an access vector as well. Threat actors may be able to leverage the ability to command hosted payloads to upload files or modify memory addresses in order to compromise the system. Depending on the implementation, hosted payloads may provide some sort of lateral movement potential.
IA-0007 Compromise Ground System Threat actors may initially compromise the ground system in order to access the target spacecraft. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes. Threat actors may also perform further reconnaissance within the system to enumerate mission networks and gather information related to ground station logical topology, missions ran out of said ground station, birds that are in-band of targeted ground stations, and other mission system capabilities.
IA-0007.01 Compromise On-Orbit Update Threat actors may manipulate and modify on-orbit updates before they are sent to the target spacecraft. This attack can be done in a number of ways, including manipulation of source code, manipulating environment variables, on-board table/memory values, or replacing compiled versions with a malicious one.
IA-0007.02 Malicious Commanding via Valid GS Threat actors may compromise target owned ground systems components (e.g., front end processors, command and control software, etc.) that can be used for future campaigns or to perpetuate other techniques. These ground systems components have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
IA-0008 Rogue External Entity Threat actors may gain access to a victim spacecraft through the use of a rogue external entity. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.01 Rogue Ground Station Threat actors may gain access to a victim spacecraft through the use of a rogue ground system. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.02 Rogue Spacecraft Threat actors may gain access to a target spacecraft using their own spacecraft that has the capability to maneuver within close proximity to a target spacecraft to carry out a variety of TTPs (i.e., eavesdropping, side-channel, etc.). Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference.
IA-0009 Trusted Relationship Access through trusted third-party relationship exploits an existing connection that has been approved for interconnection. Leveraging third party / approved interconnections to pivot into the target systems is a common technique for threat actors as these interconnections typically lack stringent access control due to the trusted status.
IA-0009.01 Mission Collaborator (academia, international, etc.) Threat actors may seek to exploit mission partners to gain an initial foothold for pivoting into the mission environment and eventually impacting the spacecraft. The complex nature of many space systems rely on contributions across organizations, including academic partners and even international collaborators. These organizations will undoubtedly vary in their system security posture and attack surface.
IA-0009.02 Vendor Threat actors may target the trust between vendors and the target space vehicle. Missions often grant elevated access to vendors in order to allow them to manage internal systems as well as cloud-based environments. The vendor's access may be intended to be limited to the infrastructure being maintained but it may provide laterally movement into the target space vehicle. Attackers may leverage security weaknesses in the vendor environment to gain access to more critical mission resources or network locations. In the space vehicle context vendors may have direct commanding and updating capabilities outside of the primary communication channel.
IA-0009.03 User Segment Threat actors can target the user segment in an effort to laterally move into other areas of the end-to-end mission architecture. When user segments are interconnected, threat actors can exploit lack of segmentation as the user segment's security undoubtedly varies in their system security posture and attack surface than the primary space mission. The user equipment and users themselves provide ample attack surface as the human element and their vulnerabilities (i.e., social engineering, phishing, iOT) are often the weakest security link and entry point into many systems.
IA-0011 Auxiliary Device Compromise Threat actors may exploit the auxiliary/peripheral devices that get plugged into space vehicles. It is no longer atypical to see space vehicles, especially CubeSats, with Universal Serial Bus (USB) ports or other ports where auxiliary/peripheral devices can be plugged in. Threat actors can execute malicious code on the space vehicles by copying the malicious code to auxiliary/peripheral devices and taking advantage of logic on the space vehicle to execute code on these devices. This may occur through manual manipulation of the auxiliary/peripheral devices, modification of standard IT systems used to initially format/create the auxiliary/peripheral device, or modification to the auxiliary/peripheral devices' firmware itself.
IA-0012 Assembly, Test, and Launch Operation Compromise Threat actors may target the spacecraft hardware and/or software while the spacecraft is at Assembly, Test, and Launch Operation (ATLO). ATLO is often the first time pieces of the spacecraft are fully integrated and exchanging data across interfaces. Malware could propagate from infected devices across the integrated spacecraft. For example, test equipment (i.e., transient cyber asset) is often brought in for testing elements of the spacecraft. Additionally, varying levels of physical security is in place which may be a reduction in physical security typically seen during development. The ATLO environment should be considered a viable attack vector and the appropriate/equivalent security controls from the primary development environment should be implemented during ATLO as well.
EX-0001 Replay Replay attacks involve threat actors recording previously data streams and then resending them at a later time. This attack can be used to fingerprint systems, gain elevated privileges, or even cause a denial of service.
EX-0001.01 Command Packets Threat actors may interact with the victim spacecraft by replaying captured commands to the spacecraft. While not necessarily malicious in nature, replayed commands can be used to overload the target spacecraft and cause it's onboard systems to crash, perform a DoS attack, or monitor various responses by the spacecraft. If critical commands are captured and replayed, thruster fires, then the impact could impact the spacecraft's attitude control/orbit.
EX-0001.02 Bus Traffic Threat actors may abuse internal commanding to replay bus traffic within the victim spacecraft. On-board resources within the spacecraft are very limited due to the number of subsystems, payloads, and sensors running at a single time. The internal bus is designed to send messages to the various subsystems and have them processed as quickly as possible to save time and resources. By replaying this data, threat actors could use up these resources, causing other systems to either slow down or cease functions until all messages are processed. Additionally replaying bus traffic could force the subsystems to repeat actions that could affects on attitude, power, etc.
EX-0009 Exploit Code Flaws Threats actors may identify and exploit flaws or weaknesses within the software running on-board the target spacecraft. These attacks may be extremely targeted and tailored to specific coding errors introduced as a result of poor coding practices or they may target known issues in the commercial software components.
EX-0009.02 Operating System Threat actors may exploit flaws in the operating system code, which controls the storage, memory management, provides resources to the FSW, and controls the bus. There has been a trend where some modern spacecraft are running Unix-based operating systems and establishing SSH connections for communications between the ground and spacecraft. Threat actors may seek to gain access to command line interfaces & shell environments in these instances. Additionally, most operating systems, including real-time operating systems, include API functionality for operator interaction. Threat actors may seek to exploit these or abuse a vulnerability/misconfiguration to maliciously execute code or commands.
EX-0009.03 Known Vulnerability (COTS/FOSS) Threat actors may utilize knowledge of the spacecraft software composition to enumerate and exploit known flaws or vulnerabilities in the commercial or open source software running on-board the target spacecraft.
PER-0003 Ground System Presence Threat actors may compromise target owned ground systems that can be used for persistent access to the spacecraft or to perpetuate other techniques. These ground systems have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute persistently.
DE-0002 Prevent Downlink Threat actors may target the downlink connections to prevent the victim spacecraft from sending telemetry to the ground controllers. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0002.01 Inhibit Ground System Functionality Threat actors may utilize ground-system presence to inhibit the ground system software's ability to process (or display) telemetry, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0004 Masquerading Threat actors may gain access to a victim spacecraft by masquerading as an authorized entity. This can be done several ways, including through the manipulation of command headers, spoofing locations, or even leveraging Insider's access (i.e., Insider Threat)
DE-0006 Modify Whitelist Threat actors may target whitelists on the space vehicles as a means to execute and/or hide malicious processes/programs. Whitelisting is a common technique used on traditional IT systems but has also been used on space vehicles. Whitelisting is used to prevent execution of unknown or potentially malicious software. However, this technique can be bypassed if not implemented correctly but threat actors may also simply attempt to modify the whitelist outright to ensure their malicious software will operate on the space vehicle that utilizes whitelisting.
LM-0001 Hosted Payload Threat actors may use the hosted payload within the victim spacecraft in order to gain access to other subsystems. The hosted payload often has a need to gather and send data to the internal subsystems, depending on its purpose. Threat actors may be able to take advantage of this communication in order to laterally move to the other subsystems and have commands be processed.
LM-0002 Exploit Lack of Bus Segregation Threat actors may exploit victim spacecraft on-board flat architecture for lateral movement purposes. Depending on implementation decisions, spacecraft can have a completely flat architecture where remote terminals, sub-systems, payloads, etc. can all communicate on the same main bus without any segmentation, authentication, etc. Threat actors can leverage this poor design to send specially crafted data from one compromised devices or sub-system to laterally move to another area of the spacecraft.
LM-0003 Constellation Hopping via Crosslink Threat actors may attempt to command another neighboring spacecraft via crosslink. spacecraft in close proximity are often able to send commands back and forth. Threat actors may be able to leverage this access to compromise another spacecraft.
LM-0004 Visiting Vehicle Interface(s) Threat actors may move from one spacecraft to another through visiting vehicle interfaces. When a vehicle docks with a spacecraft, many programs are automatically triggered in order to ensure docking mechanisms are locked. This entails several data points and commands being sent to and from the spacecraft and the visiting vehicle. If a threat actor were to compromise a visiting vehicle, they could target these specific programs in order to send malicious commands to the victim spacecraft once docked.
LM-0005 Virtualization Escape In virtualized environments, threat actors can use the open ports between the partitions to overcome the hypervisor's protection and damage another partition. Further, if the threat actor has compromised the payload, access to a critical partition can be gained through ports allowed by hypervisor.
EXF-0001 Replay Threat actors may exfiltrate data by replaying commands and capturing the telemetry or payload data as it is sent down. One scenario would be the threat actor replays commands to downlink payload data once the spacecraft is within certain location so the data can be intercepted on the downlink by threat actor ground terminals.
EXF-0006 Modify Communications Configuration Threat actors can manipulate communications equipment, modifying the existing software, hardware, or the transponder configuration to exfiltrate data via unintentional channels the mission has no control over.
EXF-0006.01 Software Defined Radio Threat actors may target software defined radios due to their software nature to setup exfiltration channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert exfiltration channels for a threat actor.
EXF-0006.02 Transponder Threat actors may change the transponder configuration to exfiltrate data via radio access to an attacker-controlled asset.
EXF-0007 Compromised Ground System Threat actors may compromise target owned ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
EXF-0008 Compromised Developer Site Threat actors may compromise development environments located within the ground system or a developer/partner site. This attack can take place in a number of different ways, including manipulation of source code, manipulating environment variables, or replacing compiled versions with a malicious one. This technique is usually performed before the target spacecraft is in orbit, with the hopes of adding malicious code to the actual FSW during the development process.
EXF-0009 Compromised Partner Site Threat actors may compromise access to partner sites that can be used for future campaigns or to perpetuate other techniques. These sites are typically configured for communications to the primary ground station(s) or in some cases the spacecraft itself. Unlike mission operated ground systems, partner sites may provide an easier target for threat actors depending on the company, roles and responsibilities, and interests of the third-party. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
EXF-0010 Payload Communication Channel Threat actors can deploy malicious software on the payload(s) which can send data through the payload channel. Payloads often have their own communication channels outside of the main TT&C pathway which presents an opportunity for exfiltration of payload data or other spacecraft data depending on the interface and data exchange.

Space Threats Mapped

ID Description
SV-AC-3 Compromised master keys or any encryption key
SV-CF-2 Eavesdropping (RF and proximity)
SV-IT-2 Unauthorized modification or corruption of data
SV-AV-4 Attacking the scheduling table to affect tasking
SV-IT-5 Onboard control procedures (i.e., ATS/RTS) that execute a scripts/sets of commands
SV-MA-3 Attacks on critical software subsystems
Attitude Determination and Control (AD&C) subsystem determines and controls the orientation of the satellite. Any cyberattack that could disrupt some portion of the control loop - sensor data, computation of control commands, and receipt of the commands would impact operations
Telemetry, Tracking and Commanding (TT&C) subsystem provides interface between satellite and ground system. Computations occur within the RF portion of the TT&C subsystem, presenting cyberattack vector
Command and Data Handling (C&DH) subsystem is the brains of the satellite. It interfaces with other subsystems, the payload, and the ground. It receives, validate, decodes, and sends commands to other subsystems, and it receives, processes, formats, and routes data for both the ground and onboard computer. C&DH has the most cyber content and is likely the biggest target for cyberattack.
Electrical Power Subsystem (EPS) provides, stores, distributes, and controls power on the satellite. An attack on EPS could disrupt, damage, or destroy the satellite.
SV-SP-3 Introduction of malicious software such as a virus, worm, Distributed Denial-Of-Service (DDOS) agent, keylogger, rootkit, or Trojan Horse
SV-SP-6 Software reuse, COTS dependence, and standardization of onboard systems using building block approach with addition of open-source technology leads to supply chain threat
SV-SP-9 On-orbit software updates/upgrades/patches/direct memory writes. If TT&C is compromised or MOC or even the developer's environment, the risk exists to do a variation of a supply chain attack where after it is in orbit you inject malicious code
SV-AC-6 Three main parts of S/C. CPU, memory, I/O interfaces with parallel and/or serial ports. These are connected via busses (i.e., 1553) and need segregated. Supply chain attack on CPU (FPGA/ASICs), supply chain attack to get malware burned into memory through the development process, and rogue RTs on 1553 bus via hosted payloads are all threats. Security or fault management being disabled by non-mission critical or payload; fault injection or MiTM into the 1553 Bus - China has developed fault injector for 1553 - this could be a hosted payload attack if payload has access to main 1553 bus; One piece of FSW affecting another. Things are not containerized from the OS or FSW perspective;
SV-AC-8 Malicious Use of hardware commands - backdoors / critical commands
SV-SP-11 Software defined radios - SDR is also another computer, networked to other parts of the spacecraft that could be pivoted to by an attacker and infected with malicious code. Once access to an SDR is gained, the attacker could alter what the SDR thinks is correct frequencies and settings to communicate with the ground.
SV-AV-5 Using fault management system against you. Understanding the fault response could be leveraged to get satellite in vulnerable state. Example, safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of TLM to cause action from ground, or some sort of RPO to cause S/C to go into safe mode;
SV-AC-1 Attempting access to an access-controlled system resulting in unauthorized access
SV-CF-1 Tapping of communications links (wireline, RF, network) resulting in loss of confidentiality; Traffic analysis to determine which entities are communicating with each other without being able to read the communicated information
SV-IT-1 Communications system spoofing resulting in denial of service and loss of availability and data integrity
SV-MA-7 Exploit ground system and use to maliciously to interact with the spacecraft
SV-AC-4 Masquerading as an authorized entity in order to gain access/Insider Threat
SV-CF-3 Knowledge of target satellite's cyber-related design details would be crucial to inform potential attacker - so threat is leaking of design data which is often stored Unclass or on contractors’ network
SV-MA-4 Not knowing what your crown jewels are and how to protect them now and in the future.

Sample Requirements

Requirement Rationale/Additional Guidance/Notes
The [organization] shall develop and document program-specific access control policies for controlling information flow and leakage on-board the spacecraft.{AC-1,AC-3,AC-3(3),AC-3(4),AC-3(13)}
The [organization] risk assessment shall include the full end to end communication pathway (i.e., round trip) to include any crosslink communications.{SV-MA-4}{AC-20,AC-20(1),AC-20(3),RA-3,SA-8(18)}
The [organization] shall develop and document program-specific identification and authentication policies for accessing the development environment and spacecraft. {AC-3,AC-14,IA-1,SA-3,SA-3(1)}
The [organization] shall protect documentation and Controlled Unclassified Information (CUI) as required, in accordance with the risk management strategy.{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-10,SC-8(1),SC-28(3),SI-12}
The [organization] shall identify and properly classify mission sensitive design/operations information and access control shall be applied in accordance with classification guides and applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{SV-CF-3,SV-AV-5}{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-8(19),SC-8(1),SC-28(3),SI-12} * Mission sensitive information should be classified as Controlled Unclassified Information (CUI) or formally known as Sensitive but Unclassified. Ideally these artifacts would be rated SECRET or higher and stored on classified networks. Mission sensitive information can typically include a wide range of candidate material: the functional and performance specifications, the RF ICDs, databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, SBU, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission.
The [organization] shall protect the security plan from unauthorized disclosure and modification.{SV-MA-6}{AC-3,PL-2,PL-7}
The [organization] shall ensure security requirements/configurations are placed in accordance with NIST 800-171 with enhancements in 800-172 on the development environments to prevent the compromise of source code from supply chain or information leakage perspective.{AC-3,SA-3,SA-3(1),SA-15}
The [organization] shall identify the key system components or capabilities that require isolation through physical or logical means.{SV-AC-6}{AC-3,SC-3,SC-7(13),SC-28(3),SC-32,SC-32(1)} Fault management and security management capabilities would be classified as mission critical and likely need separated. Additionally, capabilities like TT&C, C&DH, GNC might need separated as well.
The [organization] shall implement a verifiable flaw remediation process into the developmental and operational configuration management process.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-5,SA-3,SA-3(1),SA-11,SI-3,SI-3(10)} The verifiable process should also include a cross reference to mission objectives and impact statements. Understanding the flaws discovered and how they correlate to mission objectives will aid in prioritization.
The [organization] shall verify that the scope of security testing/evaluation provides complete coverage of required security controls (to include abuse cases and penetration testing) at the depth of testing defined in the test documents.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,RA-5(3),SA-11(5),SA-11(7)} * The frequency of testing should be driven by Program completion events and updates. * Examples of approaches are static analyses, dynamic analyses, binary analysis, or a hybrid of the three approaches
The [organization] shall maintain evidence of the execution of the security assessment plan and the results of the security testing/evaluation.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11}
The [organization] shall create and implement a security assessment plan that includes: (1) The types of analyses, testing, evaluation, and reviews of all software and firmware components; (2) The degree of rigor to be applied to include abuse cases and/or penetration testing; and (3) The types of artifacts produced during those processes.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11,SA-11(5)} The security assessment plan should include evaluation of mission objectives in relation to the security of the mission. Assessments should not only be control based but also functional based to ensure mission is resilient against failures of controls.
The [organization] shall determine the vulnerabilities/weaknesses that require remediation, and coordinate the timeline for that remediation, in accordance with the analysis of the vulnerability scan report, the mission assessment of risk, and mission needs.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-5,CM-3,RA-5,RA-7,SI-3,SI-3(10)}
The [organization] shall coordinate penetration testing on mission critical spacecraft components (hardware and/or software).{SV-MA-4}{CA-8,CA-8(1),CP-4(5)} Not all defects (i.e., buffer overflows, race conditions, and memory leaks) can be discovered statically and require execution of the system. This is where space-centric cyber testbeds (i.e., cyber ranges) are imperative as they provide an environment to maliciously attack components in a controlled environment to discover these undesirable conditions. Technology has improved to where digital twins for spacecraft are achievable, which provides an avenue for cyber testing that was often not performed due to perceived risk to the flight hardware.
The [organization] shall employ dynamic analysis (e.g.using simulation, penetration testing, fuzzing, etc.) to identify software/firmware weaknesses and vulnerabilities in developed and incorporated code (open source, commercial, or third-party developed code).{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-8,CM-10(1),RA-3(1),SA-11(5),SA-11(8),SA-11(9),SI-3,SI-7(10)}
The [organization] shall perform penetration testing/analysis: (1) On potential system elements before accepting the system; (2) As a realistic simulation of the active adversary’s known adversary tactics, techniques, procedures (TTPs), and tools; and (3) Throughout the lifecycle on physical and logical systems, elements, and processes.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CA-8(1),SA-9,SA-11(5),SR-5(2)} Penetration testing should be performed throughout the lifecycle on physical and logical systems, elements, and processes including: (1) Hardware, software, and firmware development processes; (2) Shipping/handling procedures; (3) Personnel and physical security programs; (4) Configuration management tools/measures to maintain provenance; and (5) Any other programs, processes, or procedures associated with the production/distribution of supply chain elements. 
The [organization] shall maintain a list of suppliers and potential suppliers used, and the products that they supply to include software.{SV-SP-3,SV-SP-4,SV-SP-11}{CM-10,PL-8(2),PM-30,SA-8(9),SA-8(11)} Ideally you have diversification with suppliers
The [organization] shall distribute documentation to only personnel with defined roles and a need to know.{SV-CF-3,SV-AV-5}{CM-12,CP-2,SA-5,SA-10} Least privilege and need to know should be employed with the protection of all documentation. Documentation can contain sensitive information that can aid in vulnerability discovery, detection, and exploitation. For example, command dictionaries for ground and space systems should be handles with extreme care. Additionally, design documents for missions contain many key elements that if compromised could aid in an attacker successfully exploiting the system.
The [organization] shall test software and firmware updates related to flaw remediation for effectiveness and potential side effects on mission systems in a separate test environment before installation.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-3,CM-3(1),CM-3(2),CM-4(1),CM-4(2),CM-10(1),SA-8(31),SA-11(9),SI-2,SI-3,SI-3(10),SI-7(10),SI-7(12),SR-5(2)} This requirement is focused on software and firmware flaws. If hardware flaw remediation is required, refine the requirement to make this clear. 
The [organization] shall define processes and procedures to be followed when integrity verification tools detect unauthorized changes to software, firmware, and information.{SV-IT-2}{CM-3,CM-3(1),CM-3(5),CM-5(6),CM-6,CP-2,IR-6,IR-6(2),PM-30,SC-16(1),SC-51,SI-3,SI-4(7),SI-4(24),SI-7,SI-7(7),SI-7(10)}
The [organization] shall release updated versions of the mission information systems incorporating security-relevant software and firmware updates, after suitable regression testing, at a frequency no greater than [Program-defined frequency [90 days]].{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-3(2),CM-4(1)} On-orbit patching/upgrades may be necessary if vulnerabilities are discovered after launch. The system should have the ability to update software post-launch.
The [organization] shall develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including support tamper resistance and provide a level of protection against the introduction of malicious code or hardware.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CM-3(8),CM-7(9),PM-30,SA-8(9),SA-8(11),SA-9,SA-10(3),SA-19,SC-51,SR-4(3),SR-4(4),SR-5(2),SR-11}
The [organization] shall prohibit the use of binary or machine-executable code from sources with limited or no warranty and without the provision of source code.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-7(8)}
The [organization] shall conduct a criticality analysis to identify mission critical functions and critical components and reduce the vulnerability of such functions and components through secure system design.{SV-SP-3,SV-SP-4,SV-AV-7,SV-MA-4}{CP-2,CP-2(8),PL-7,PM-11,PM-30(1),RA-3(1),RA-9,SA-8(9),SA-8(11),SA-8(25),SA-12,SA-14,SA-15(3),SC-7(29),SR-1} During SCRM, criticality analysis will aid in determining supply chain risk. For mission critical functions/components, extra scrutiny must be applied to ensure supply chain is secured.
The [organization] shall define policy and procedures to ensure that the developed or delivered systems do not embed unencrypted static authenticators in applications, access scripts, configuration files, nor store unencrypted static authenticators on function keys.{SV-AC-1,SV-AC-3}{IA-5(7)}
The [organization] shall report identified systems or system components containing software affected by recently announced cybersecurity-related software flaws (and potential vulnerabilities resulting from those flaws) to [organization] officials with cybersecurity responsibilities.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-11}{IR-6,IR-6(2),SI-2,SI-3,SI-4(12),SR-4(4)}
The [organization] shall have a two-man rule to achieve a high level of security for systems with command level access to the spacecraft.(Under this rule all access and actions require the presence of two authorized people at all times.) {SV-AC-4}{PE-3} Note: These are not spacecraft requirements but important to call out but likely are covered under other requirements by the customer.
The [organization] shall have Insider Threat Program to aid in the prevention of people with authorized access to perform malicious activities.{SV-AC-4}{PM-12,AT-2(2),IR-4(7)} Note: These are not spacecraft requirements but important to call out but likely are covered under other requirements by the customer.
The [organization] shall use all-source intelligence analysis of suppliers and potential suppliers of the information system, system components, or system services to inform engineering, acquisition, and risk management decisions.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{PM-16,PM-30,RA-2,RA-3(1),RA-3(2),RA-7,SA-9,SA-12(8),SR-5(2)} * The Program should also consider sub suppliers and potential sub suppliers. * All-source intelligence of suppliers that the organization may use includes: (1) Defense Intelligence Agency (DIA) Threat Assessment Center (TAC), the enterprise focal point for supplier threat assessments for the DOD acquisition community risks; (2) Other U.S. Government resources including: (a) Government Industry Data Exchange Program (GIDEP) – Database where government and industry can record issues with suppliers, including counterfeits; and (b) System for Award Management (SAM) – Database of companies that are barred from doing business with the US Government. 
The [organization] shall request threat analysis of suppliers of critical components and manage access to and control of threat analysis products containing U.S.person information.{SV-SP-3,SV-SP-4,SV-SP-11}{PM-16,PM-30(1),RA-3(1),SA-9,SA-12,SR-1} The intent of this requirement is to address supply chain concerns on hardware and software vendors. Not required for trusted suppliers accredited to the Defense Microelectronic Activity (DMEA). If the Program intends to use a supplier not accredited by DMEA, the government customer should be notified as soon as possible. If the Program has internal processes to vet suppliers, it may meet this requirement. All software used and its origins must be included in the SBOM and be subjected to internal and Government vulnerability scans.
The [organization] shall use all-source intelligence analysis on threats to mission critical capabilities and/or system components to inform risk management decisions.{SV-MA-4}{PM-16,RA-3(2),RA-3(3),RA-7,RA-9,SA-12(8),SA-15(8)}
The [organization] shall maintain documentation tracing the strategies, tools, and methods implemented to mitigate supply chain risk .{SV-SP-3,SV-SP-4,SV-AV-7}{PM-30,RA-3(1),SA-12(1),SR-5} Examples include: (1) Transferring a portion of the risk to the developer or supplier through the use of contract language and incentives; (2) Using contract language that requires the implementation of SCRM throughout the system lifecycle in applicable contracts and other acquisition and assistance instruments (grants, cooperative agreements, Cooperative Research and Development Agreements (CRADAs), and other transactions). Within the DOD some examples include: (a) Language outlined in the Defense Acquisition Guidebook section 13.13. Contracting; (b) Language requiring the use of protected mechanisms to deliver elements and data about elements, processes, and delivery mechanisms; (c) Language that articulates that requirements flow down supply chain tiers to sub-prime suppliers. (3) Incentives for suppliers that: (a) Implement required security safeguards and SCRM best practices; (b) Promote transparency into their organizational processes and security practices; (c) Provide additional vetting of the processes and security practices of subordinate suppliers, critical information system components, and services; and (d) Implement contract to reduce SC risk down the contract stack. (4) Gaining insight into supplier security practices; (5) Using contract language and incentives to enable more robust risk management later in the lifecycle; (6) Using a centralized intermediary or “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary;
The [organization] shall protect against supply chain threats to the system, system components, or system services by employing security safeguards as defined by NIST SP 800-161 Rev.1.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{PM-30,RA-3(1),SA-8(9),SA-8(11),SA-12,SI-3,SR-1} The chosen supply chain safeguards should demonstrably support a comprehensive, defense-in-breadth information security strategy. Safeguards should include protections for both hardware and software. Program should define their critical components (HW & SW) and identify the supply chain protections, approach/posture/process.
The [organization], upon termination of individual employment, disables information system access within [TBD minutes] of termination.{SV-AC-4}{PS-4}
The [organization] shall conduct an assessment of risk prior to each milestone review [SRR\PDR\CDR], including the likelihood and magnitude of harm, from the unauthorized access, use, disclosure, disruption, modification, or destruction of the platform and the information it processes, stores, or transmits.{SV-MA-4}{RA-2,RA-3,SA-8(25)}
The [organization] shall document risk assessment results in [risk assessment report].{SV-MA-4}{RA-3}
The [organization] shall review risk assessment results [At least annually if not otherwise defined in formal organizational policy].{SV-MA-4}{RA-3}
The [organization] shall update the risk assessment [At least annually if not otherwise defined in formal institutional policy] or whenever there are significant changes to the information system or environment of operation (including the identification of new threats and vulnerabilities), or other conditions that may impact the security state of the spacecraft.{SV-MA-4}{RA-3}
The [organization] shall use the threat and vulnerability analyses of the as-built system, system components, or system services to inform and direct subsequent testing/evaluation of the as-built system, component, or service.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-3(3),SA-11(2),SA-15(8),SI-3}
The [organization] shall ensure that the vulnerability scanning tools (e.g., static analysis and/or component analysis tools) used include the capability to readily update the list of potential information system vulnerabilities to be scanned.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,RA-5(1),RA-5(3),SI-3}
The [organization] shall perform vulnerability analysis and risk assessment of all systems and software.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,RA-5(3),SA-15(7),SI-3}
The [organization] shall ensure that vulnerability scanning tools and techniques are employed that facilitate interoperability among tools and automate parts of the vulnerability management process by using standards for: (1) Enumerating platforms, custom software flaws, and improper configurations; (2) Formatting checklists and test procedures; and (3) Measuring vulnerability impact.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,RA-5(3),SI-3} Component/Origin scanning looks for open-source libraries/software that may be included into the baseline and looks for known vulnerabilities and open-source license violations.
The [organization] shall perform static binary analysis of all firmware that is utilized on the spacecraft.{SV-SP-7,SV-SP-11}{RA-5,SA-10,SA-11,SI-7(10)} Many commercial products/parts are utilized within the system and should be analyzed for security weaknesses. Blindly accepting the firmware is free of weakness is unacceptable for high assurance missions. The intent is to not blindly accept firmware from unknown sources and assume it is secure. This is meant to apply to firmware the vendors are not developing internally. In-house developed firmware should be going through the vendor's own testing program and have high assurance it is secure. When utilizing firmware from other sources, "expecting" does not meet this requirement. Each supplier needs to provide evidence to support that claim that their firmware they are getting is genuine and secure.
The [organization] shall perform static source code analysis for all available source code looking for [[organization]-defined Top CWE List] weaknesses using complimentary set of static code analysis tools (i.e.more than one).{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,SA-11(1),SA-15(7)}
The [organization] shall analyze vulnerability/weakness scan reports and results from security control assessments.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,SI-3}
The [organization] shall ensure that the list of potential system vulnerabilities scanned is updated [prior to a new scan] {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5(2),SI-3}
The [organization] shall perform configuration management during system, component, or service during [design; development; implementation; operations].{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-10}
The [organization] shall review proposed changes to the spacecraft, assessing both mission and security impacts.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-10,CM-3(2)}
The [organization] shall correct flaws identified during security testing/evaluation.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11} Flaws that impact the mission objectives should be prioritized.
The [organization] shall perform [Selection (one or more): unit; integration; system; regression] testing/evaluation at [Program-defined depth and coverage].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11} The depth needs to include functional testing as well as negative/abuse testing.
The [organization] shall create prioritized list of software weakness classes (e.g., Common Weakness Enumerations) to be used during static code analysis for prioritization of static analysis results.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(1),SA-15(7)} The prioritized list of CWEs should be created considering operational environment, attack surface, etc. Results from the threat modeling and attack surface analysis should be used as inputs into the CWE prioritization process. There is also a CWSS (https://cwe.mitre.org/cwss/cwss_v1.0.1.html) process that can be used to prioritize CWEs. The prioritized list of CWEs can help with tools selection as well as you select tools based on their ability to detect certain high priority CWEs.
The [organization] shall use threat modeling and vulnerability analysis to inform the current development process using analysis from similar systems, components, or services where applicable.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(2),SA-15(8)}
The [organization] shall perform and document threat and vulnerability analyses of the as-built system, system components, or system services.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(2),SI-3}
The [organization] shall perform a manual code review of all flight code.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(4)}
The [organization] shall conduct an Attack Surface Analysis and reduce attack surfaces to a level that presents a low level of compromise by an attacker.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(6),SA-15(5)}
The [organization] shall define acceptable coding languages to be used by the software developer.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15}
The [organization] shall define acceptable secure coding standards for use by the software developers.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15}
The [organization] shall have automated means to evaluate adherence to coding standards.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15,SA-15(7),RA-5} Manual review cannot scale across the code base; you must have a way to scale in order to confirm your coding standards are being met. The intent is for automated means to ensure code adheres to a coding standard.
The [organization] shall perform component analysis (a.k.a.origin analysis) for developed or acquired software.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15(7),RA-5}
The [organization] shall require subcontractors developing information system components or providing information system services (as appropriate) to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} Select the particular subcontractors, software vendors, and manufacturers based on the criticality analysis performed for the Program Protection Plan and the criticality of the components that they supply. 
The [organization] shall require the developer of the system, system component, or system service to deliver the system, component, or service with [Program-defined security configurations] implemented.{SV-SP-1,SV-SP-9}{SA-4(5)} For the spacecraft FSW, the defined security configuration could include to ensure the software does not contain a pre-defined list of Common Weakness Enumerations (CWEs)and/or CAT I/II Application STIGs.
The [organization] shall protect documentation and Essential Elements of Information (EEI) as required, in accordance with the risk management strategy.{SV-CF-3,SV-AV-5}{SA-5} Essential Elements of Information (EEI):
The [organization] shall correct reported cybersecurity-related information system flaws.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SI-2} * Although this requirement is stated to specifically apply to cybersecurity-related flaws, the Program office may choose to broaden it to all SV flaws. * This requirement is allocated to the Program, as it is presumed, they have the greatest knowledge of the components of the system and when identified flaws apply. 
The [organization] shall identify, report, and coordinate correction of cybersecurity-related information system flaws.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SI-2}
The [organization] shall develop and implement anti-counterfeit policy and procedures, in coordination with the [CIO], that is demonstrably consistent with the anti-counterfeit policy defined by the Program office.{SV-SP-4,SV-SP-11}{SR-11}
The [organization] shall employ [organization]-defined techniques to limit harm from potential adversaries identifying and targeting the Program supply chain.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-3(2),SC-38} Examples of security safeguards that the organization should consider implementing to limit the harm from potential adversaries targeting the organizational supply chain, are: (1) Using trusted physical delivery mechanisms that do not permit access to the element during delivery (ship via a protected carrier, use cleared/official couriers, or a diplomatic pouch); (2) Using trusted electronic delivery of products and services (require downloading from approved, verification-enhanced sites); (3) Avoiding the purchase of custom configurations, where feasible; (4) Using procurement carve outs (i.e., exclusions to commitments or obligations), where feasible; (5) Using defensive design approaches; (6) Employing system OPSEC principles; (7) Employing a diverse set of suppliers; (8) Employing approved vendor lists with standing reputations in industry; (9) Using a centralized intermediary and “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary Employing inventory management policies and processes; (10) Using flexible agreements during each acquisition and procurement phase so that it is possible to meet emerging needs or requirements to address supply chain risk without requiring complete revision or re-competition of an acquisition or procurement; (11) Using international, national, commercial or government standards to increase potential supply base; (12) Limiting the disclosure of information that can become publicly available; and (13) Minimizing the time between purchase decisions and required delivery. 
The [organization] shall employ the [organization]-defined approaches for the purchase of the system, system components, or system services from suppliers.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-5} This could include tailored acquisition strategies, contract tools, and procurement methods.
The [organization] (and Prime Contractor) shall conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-6}
The [organization] shall employ [Selection (one or more): independent third-party analysis, Program penetration testing, independent third-party penetration testing] of [Program-defined supply chain elements, processes, and actors] associated with the system, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-6(1)}
The [organization] shall employ [Program-defined Operations Security (OPSEC) safeguards] to protect supply chain-related information for the system, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-7,SC-38,CP-2(8)} OPSEC safeguards may include: (1) Limiting the disclosure of information needed to design, develop, test, produce, deliver, and support the element for example, supplier identities, supplier processes, potential suppliers, security requirements, design specifications, testing and evaluation result, and system/component configurations, including the use of direct shipping, blind buys, etc.; (2) Extending supply chain awareness, education, and training for suppliers, intermediate users, and end users; (3) Extending the range of OPSEC tactics, techniques, and procedures to potential suppliers, contracted suppliers, or sub-prime contractor tier of suppliers; and (4) Using centralized support and maintenance services to minimize direct interactions between end users and original suppliers.
The [organization] shall enable integrity verification of software and firmware components.{SV-IT-2}{CM-3(5),CM-5(6),CM-10(1),SA-8(9),SA-8(11),SA-8(21),SA-10(1),SI-3,SI-4(24),SI-7,SI-7(10),SI-7(12),SR-4(4)} * The integrity verification mechanisms may include:  ** Stipulating and monitoring logical delivery of products and services, requiring downloading from approved, verification-enhanced sites; ** Encrypting elements (software, software patches, etc.) and supply chain process data in transit (motion) and at rest throughout delivery; ** Requiring suppliers to provide their elements “secure by default”, so that additional configuration is required to make the element insecure; ** Implementing software designs using programming languages and tools that reduce the likelihood of weaknesses; ** Implementing cryptographic hash verification; and ** Establishing performance and sub-element baseline for the system and system elements to help detect unauthorized tampering/modification during repairs/refurbishing. ** Stipulating and monitoring logical delivery of products and services, requiring downloading from approved, verification-enhanced sites; ** Encrypting elements (software, software patches, etc.) and supply chain process data in transit (motion) and at rest throughout delivery; ** Requiring suppliers to provide their elements “secure by default”, so that additional configuration is required to make the element insecure; ** Implementing software designs using programming languages and tools that reduce the likelihood of weaknesses; ** Implementing cryptographic hash verification; and ** Establishing performance and sub-element baseline for the system and system elements to help detect unauthorized tampering/modification during repairs/refurbishing.
The [organization] shall have physical security controls to prevent unauthorized access to the systems that have the ability to command the spacecraft.{SV-AC-4}{PE-3} Note: These are not spacecraft requirements but important to call out but likely are covered under other requirements by the customer.
The [organization] shall require the developer of the system, system component, or system services to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} Examples of good security practices would be using defense-in-depth tactics across the board, least-privilege being implemented, two factor authentication everywhere possible, using DevSecOps, implementing and validating adherence to secure coding standards, performing static code analysis, component/origin analysis for open source, fuzzing/dynamic analysis with abuse cases, etc.
The [organization] should have requirements/controls for all ground/terrestrial systems covering: Data Protection, Ground Software, Endpoints, Networks, Computer Network Defense / Incident Response, Perimeter Security, Physical Controls, and Prevention Program (SSP, PPP, and Training).See NIST 800-53 and CNSSI 1253 for guidance on ground security {SV-MA-7}
The [spacecraft] shall terminate the connection associated with a communications session at the end of the session or after 3 minutes of inactivity.{SV-AC-1}{AC-12,SA-8(18),SC-10,SC-23(1),SC-23(3),SI-14,SI-14(3)}
The [organization] shall ensure reused TT&C software has adequate uniqueness for command decoders/dictionaries so that commands are received by only the intended satellite.{SV-SP-6}{AC-17(10),SC-16(3),SI-3(9)} The goal is to eliminate risk that compromise of one command database does not affect a different one due to reuse. The intent is to ensure that one SV can not process the commands from another SV. Given the crypto setup with keys and VCC needing to match, this requirement may be inherently met as a result of using type-1 cryptography. The intent is not to recreate entire command dictionaries but have enough uniqueness in place that it prevents a SV from receiving a rogue command. As long as there is some uniqueness at the receiving end of the commands, that is adequate.
The [spacecraft] shall protect authenticator content from unauthorized disclosure and modification.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),IA-5,IA-5(6),RA-5(4),SA-8(18),SA-8(19),SC-28(3)}
The [spacecraft] encryption key handling shall be handled outside of the onboard software and protected using cryptography.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(1),SC-28(3)}
The [spacecraft] encryption keys shall be restricted so that the onboard software is not able to access the information for key readout.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
The [spacecraft] encryption keys shall be restricted so that they cannot be read via any telecommands.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
The [spacecraft] shall produce, control, and distribute symmetric cryptographic keys using NSA Certified or Approved key management technology and processes per CNSSP 12.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-9(6),SC-12,SC-12(1),SC-12(2),SC-12(3)}
The [spacecraft] shall provide the capability to restrict command lock based on geographic location of ground stations.{SV-AC-1}{AC-2(11),IA-10,SI-4(13),SI-4(25)} This could be performed using command lockout based upon when the spacecraft is over selected regions. This should be configurable so that when conflicts arise, the Program can update. The goal is so the spacecraft won't accept a command when the spacecraft determines it is in a certain region.
The [spacecraft] shall restrict the use of information inputs to spacecraft and designated ground stations as defined in the applicable ICDs.{SV-AC-1,SV-AC-2}{AC-20,SC-23,SI-10,SI-10(5),SI-10(6)}
The [spacecraft] shall uniquely identify and authenticate the ground station and other spacecraft before establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(10),AC-20,IA-3,IA-4,SA-8(18),SI-3(9)}
The [spacecraft] shall authenticate the ground station (and all commands) and other spacecraft before establishing remote connections using bidirectional authentication that is cryptographically based.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(2),AC-17(10),AC-18(1),AC-20,IA-3(1),IA-4,IA-4(9),IA-7,IA-9,SA-8(18),SA-8(19),SA-9(2),SC-7(11),SC-16(1),SC-16(2),SC-16(3),SC-23(3),SI-3(9)} Authorization can include embedding opcodes in command strings, using trusted authentication protocols, identifying proper link characteristics such as emitter location, expected range of receive power, expected modulation, data rates, communication protocols, beamwidth, etc.; and tracking command counter increments against expected values.
The [spacecraft] shall implement cryptographic mechanisms to identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters.{SV-AV-1,SV-IT-1}{AC-3,AC-20,SA-8(19),SC-8(1),SC-23(3),SC-40(3),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
The [spacecraft] shall employ the principle of least privilege, allowing only authorized accesses processes which are necessary to accomplish assigned tasks in accordance with system functions.{SV-AC-6}{AC-3,AC-6,AC-6(9),CA-9,CM-5,CM-5(5),CM-5(6),SA-8(2),SA-8(5),SA-8(6),SA-8(14),SA-8(23),SA-17(7),SC-2,SC-7(29),SC-32,SC-32(1),SI-3}
The [spacecraft] shall implement relay and replay-resistant authentication mechanisms for establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,IA-2(8),IA-2(9),SA-8(18),SC-8(1),SC-16(1),SC-16(2),SC-23(3),SC-40(4)}
The [spacecraft] shall ensure that processes reusing a shared system resource (e.g., registers, main memory, secondary storage) do not have access to information (including encrypted representations of information) previously stored in that resource during a prior use by a process after formal release of that resource back to the system or reuse.{SV-AC-6}{AC-3,PM-32,SA-8(2),SA-8(5),SA-8(6),SA-8(19),SC-4,SI-3}
The [spacecraft] shall protect the confidentiality and integrity of the following information using cryptography while it is at rest: [all information].{AC-3,SA-8(19),SC-28,SC-28(1),SI-7(6)} * The intent as written is for all transmitted traffic to be protected. This includes internal to internal communications and especially outside of the boundary.
The [spacecraft] shall maintain the confidentiality and integrity of information during preparation for transmission and during reception.{SV-AC-7}{AC-3,SA-8(19),SC-8,SC-8(1),SC-8(2),SC-16,SC-16(1)} * Preparation for transmission and during reception includes the aggregation, packing, and transformation options performed prior to transmission and the undoing of those operations that occur upon receipt.
The [spacecraft] shall not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode).{SV-AC-1,SV-CF-1,SV-CF-2}{AC-3(10),SA-8(18),SA-8(19),SC-16(2),SC-16(3),SC-40(4)}
The [spacecraft] shall require multi-factor authorization for all updates to the task scheduling functionality within the spacecraft.{SV-AV-4}{AC-3(2)} Multi-factor authorization could be the "two-man rule" where procedures are in place to prevent a successful attack by a single actor (note: development activities that are subsequently subject to review or verification activities may already require collaborating attackers such that a "two-man rule" is not appropriate).
The [spacecraft] shall require multi-factor authorization for new and updates to on-board stored command sequences.{SV-IT-5}{AC-3(2)} Multi-factor authorization could be the "two-man rule" where procedures are in place to prevent a successful attack by a single actor (note: development activities that are subsequently subject to review or verification activities may already require collaborating attackers such that a "two-man rule" is not appropriate).
The [spacecraft] software subsystems shall provide non-identical methods, or functionally independent methods, for commanding a mission critical function when the software is the sole control of that function.{SV-MA-3,SV-AV-7}{AC-3(2)}
The [spacecraft] software subsystems shall provide two independent and unique command messages to deactivate a fault tolerant capability for a critical or catastrophic hazard.{SV-MA-3,SV-AV-7}{AC-3(2)}
The [spacecraft] shall require multi-factor authorization for all spacecraft [applications or operating systems] updates within the spacecraft.{SV-SP-9,SV-SP-11}{AC-3(2),CM-3(8),CM-5,PM-12,SA-8(8),SA-8(31),SA-10(2),SI-3(8),SI-7(12),SI-10(6)} The intent is for multiple checks to be performed prior to executing these SV SW updates. One action is mere act of uploading the SW to the spacecraft. Another action could be check of digital signature (ideal but not explicitly required) or hash or CRC or a checksum. Crypto boxes provide another level of authentication for all commands, including SW updates but ideally there is another factor outside of crypto to protect against FSW updates. Multi-factor authorization could be the "two-man rule" where procedures are in place to prevent a successful attack by a single actor (note: development activities that are subsequently subject to review or verification activities may already require collaborating attackers such that a "two-man rule" is not appropriate).
The [spacecraft] shall enforce approved authorizations for controlling the flow of information within the platform and between interconnected systems so that information does not leave the platform boundary unless it is encrypted.{SV-AC-6}{AC-3(3),AC-3(4),AC-4,AC-4(6),AC-4(21),CA-3,CA-3(6),CA-3(7),CA-9,IA-9,SA-8(19),SC-8(1),SC-16(3)}
The [spacecraft] shall, when transferring information between different security domains, implements the following security policy filters that require fully enumerated formats that restrict data structure and content: connectors and semaphores implemented in the RTOS.{SV-AC-6}{AC-3(3),AC-3(4),AC-4(14),IA-9,SA-8(19),SC-16}
The [spacecraft] shall implement boundary protections to separate bus, communications, and payload components supporting their respective functions.{SV-AC-6}{AC-3(3),AC-3(4),CA-9,SA-8(3),SA-8(14),SA-8(18),SA-8(19),SA-17(7),SC-2,SC-2(2),SC-7(13),SC-7(21),SC-7(29),SC-16(3),SC-32,SI-3,SI-4(13),SI-4(25)}
The [spacecraft] shall isolate mission critical functionality from non-mission critical functionality by means of an isolation boundary (e.g.via partitions) that controls access to and protects the integrity of, the hardware, software, and firmware that provides that functionality.{SV-AC-6}{AC-3(3),AC-3(4),CA-9,SA-8(3),SA-8(19),SA-17(7),SC-2,SC-3,SC-3(4),SC-7(13),SC-7(29),SC-32,SC-32(1),SI-3,SI-7(10),SI-7(12)}
The [spacecraft] data within partitioned applications shall not be read or modified by other applications/partitions.{SV-AC-6}{AC-3(3),AC-3(4),SA-8(19),SC-2(2),SC-4,SC-6,SC-32}
The [spacecraft] shall prevent unauthorized access to system resources by employing an efficient capability based object model that supports both confinement and revocation of these capabilities when the platform security deems it necessary.{SV-AC-6}{AC-3(8),IA-4(9),PM-32,SA-8(2),SA-8(5),SA-8(6),SA-8(18),SA-8(19),SC-2(2),SC-4,SC-16,SC-32,SI-3}
The [organization] shall state that information should not be allowed to flow between partitioned applications unless explicitly permitted by the Program's security policy.{SV-AC-6}{AC-4,AC-4(6)}
The [spacecraft] shall use protected processing domains to enforce the policy that information does not leave the platform boundary unless it is encrypted as a basis for flow control decisions.{SV-AC-6}{AC-4(2),IA-9,SA-8(19),SC-8(1),SC-16(3)}
The [spacecraft] shall incorporate backup sources for navigation and timing.{SV-IT-1}{AU-8(1),SC-45(1),SC-45(2)}
The [spacecraft] shall have fault-tolerant authoritative time sourcing for the platform's clock.{SV-IT-1}{AU-8(2),SC-45,SC-45(1),SC-45(2),SI-13} * Adopt voting schemes (triple modular redundancy) that include inputs from backup sources. Consider providing a second reference frame against which short-term changes or interferences can be compared. * Atomic clocks, crystal oscillators and/or GPS receivers are often used as time sources. GPS should not be used as the only source due to spoofing/jamming concerns.
The [spacecraft] shall use automated mechanisms to maintain and validate baseline configuration to ensure the [spacecraft] is up-to-date, complete, accurate, and readily available.{SV-SP-3}{CM-2(2),CM-3(5),CM-3(7),CM-6,SA-8(8)} This could be command trigger from Ground or elsewhere. The point here is that the self-test is executed onboard the spacecraft via onboard HW/SW self-test mechanisms and its result is reported to the Ground
The [spacecraft] shall prevent the installation of Flight Software without verification that the component has been digitally signed using a certificate that is recognized and approved by the ground.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-9}{CM-3,CM-3(8),CM-5,CM-5(3),CM-14,SA-8(8),SA-8(31),SA-10(2),SI-3,SI-7(12),SI-7(15)}
The [spacecraft] shall provide automatic notification to ground operators upon discovering discrepancies during integrity verification.{SV-IT-2}{CM-3(5),SA-8(21),SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(2)}
The [organization] shall ensure that software planned for reuse meets the fit, form, and function, and security as a component within the new application.{SV-SP-6,SV-SP-7,SV-SP-11}{CM-7(5)}
The [spacecraft] shall enter a cyber-safe mode when conditions that threaten the platform are detected, enters a cyber-safe mode of operation with restrictions as defined based on the cyber-safe mode.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4,IR-4(1),IR-4(3),PE-10,RA-10,SA-8(16),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-13,SI-17}
The [spacecraft] shall provide the capability to enter the platform into a known good, operational cyber-safe mode from a tamper-resistant, configuration-controlled (“gold”) image that is authenticated as coming from an acceptable supplier, and has its integrity verified.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4(3),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-13,SI-17} Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and SW functions to preattack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on available equipment still available after a cyberattack. The goal is for the vehicle to resume full mission operations. If not possible, a reduced level of mission capability should be achieved.
The [spacecraft] shall fail to a known secure state for failures during initialization, and aborts preserving information necessary to return to operations in failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(24),SC-24,SI-13,SI-17}
The [spacecraft] shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution).{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2}{CP-13,SA-8(19),SA-8(24),SC-7(18),SI-13,SI-13(4)}
The [organization] shall define the security safeguards that are to be automatically employed when integrity violations are discovered.{SV-IT-2}{CP-2,SA-8(21),SI-3,SI-4(7),SI-4(12),SI-7(5),SI-7(8)}
The [organization] shall define the resources to be allocated to protect the availability of system resources.{SV-AC-6}{CP-2(2),SC-6}
The [spacecraft] shall provide or support the capability for recovery and reconstitution to a known state after a disruption, compromise, or failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-4(4),CP-10,CP-10(4),CP-10(6),CP-13,IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(24)}
The [spacecraft] shall maintain the ability to establish communication with the spacecraft in the event of an anomaly to the primary receive path.{SV-AV-1,SV-IT-1}{CP-8,SA-8(18),SC-47} Receiver communication can be established after an anomaly with such capabilities as multiple receive apertures, redundant paths within receivers, redundant receivers, omni apertures, fallback default command modes, and lower bit rates for contingency commanding, as examples
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards: [NSA- certified or approved cryptography for protection of classified information, FIPS-validated cryptography for the provision of hashing].{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2,SV-AC-3}{IA-7,SC-13}
The [spacecraft] shall protect system components, associated data communications, and communication buses in accordance with: (i) national emissions and TEMPEST policies and procedures, and (ii) the security category or sensitivity of the transmitted information.{SV-CF-2,SV-MA-2}{PE-14,PE-19,PE-19(1),RA-5(4),SA-8(18),SA-8(19),SC-8(1)} The measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements. The concerns addressed by this control during operation are emanations leakage between multiple payloads within a single space platform, and between payloads and the bus.
The [organization] shall describe (a) the separation between RED and BLACK cables, (b) the filtering on RED power lines, (c) the grounding criteria for the RED safety grounds, (d) and the approach for dielectric separators on any potential fortuitous conductors.{SV-CF-2,SV-MA-2}{PE-19,PE-19(1)}
The [spacecraft] shall be designed such that it protects itself from information leakage due to electromagnetic signals emanations.{SV-CF-2,SV-MA-2}{PE-19,PE-19(1),RA-5(4),SA-8(19)} This requirement applies if system components are being designed to address EMSEC and the measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements.
The [spacecraft] shall prevent unauthorized and unintended information transfer via shared system resources.{SV-AC-6}{PM-32,SA-8(2),SA-8(5),SA-8(6),SA-8(19),SC-2(2),SC-4}
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)} The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management.
The [spacecraft] shall generate error messages that provide information necessary for corrective actions without revealing information that could be exploited by adversaries.{SV-AV-5,SV-AV-6,SV-AV-7}{RA-5(4),SI-4(12),SI-11}
The [spacecraft] shall reveal error messages only to operations personnel monitoring the telemetry.{SV-AV-5,SV-AV-6,SV-AV-7}{RA-5(4),SI-4(12),SI-11}
The [spacecraft] shall maintain a separate execution domain for each executing process.{SV-AC-6}{SA-8(14),SA-8(19),SC-2(2),SC-7(21),SC-39,SI-3}
The [spacecraft] flight software must not be able to tamper with the security policy or its enforcement mechanisms.{SV-AC-6}{SA-8(16),SA-8(19),SC-3,SC-7(13)}
The [spacecraft] shall implement cryptographic mechanisms that achieve adequate protection against the effects of intentional electromagnetic interference.{SV-AV-1,SV-IT-1}{SA-8(19),SC-8(1),SC-40,SC-40(1)}
The [organization] shall define and document the transitional state or security-relevant events when the spacecraft will perform integrity checks on software, firmware, and information.{SV-IT-2}{SA-8(21),SI-7(1),SI-7(10),SR-4(4)}
The [spacecraft] shall be capable of removing flight software after updated versions have been installed.{SV-SP-1,SV-SP-9}{SA-8(8),SI-2(6)}
The [organization] shall use NIST Approved for symmetric key management for Unclassified systems; NSA Approved or stronger symmetric key management technology for Classified systems.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(2)} FIPS-complaint technology used by the Program shall include (but is not limited to) cryptographic key generation algorithms or key distribution techniques that are either a) specified in a FIPS, or b) adopted in a FIPS and specified either in an appendix to the FIPS or in a document referenced by the FIPS. NSA-approved technology used for symmetric key management by the Program shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.
The [organization] shall use NSA approved key management technology and processes.NSA-approved technology used for asymmetric key management by The [organization] shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)}
The [spacecraft] shall produce, control, and distribute asymmetric cryptographic keys using [organization]-defined asymmetric key management processes.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)} In most cased the Program will leverage NSA-approved key management technology and processes.
The [spacecraft] shall protect the confidentiality and integrity of the [all information] using cryptography while it is at rest.{SV-IT-2,SV-CF-2}{SC-28,SC-28(1),SI-7(6)} * Information at rest refers to the state of information when it is located on storage devices as specific components of information systems. This is often referred to as data-at-rest encryption.
The [spacecraft] software subsystems shall provide independent mission/cyber critical threads such that any one credible event will not corrupt another mission/cyber critical thread.{SV-MA-3,SV-AV-7}{SC-3}
The [spacecraft] shall internally monitor GPS performance so that changes or interruptions in the navigation or timing are flagged.{SV-IT-1}{SC-45(1)}
The [spacecraft] shall protect external and internal communications from jamming and spoofing attempts.{SV-AV-1,SV-IT-1}{SC-5,SC-40,SC-40(1)} Can be aided via the Crosslink, S-Band, and L-Band subsystems
The [spacecraft] shall protect the availability of resources by allocating [organization]-defined resources based on [priority and/or quota].{SV-AC-6}{SC-6} In particular, this control is required for all space platform buses to ensure execution of high priority functions; it is particularly important when there are multiple payloads sharing a bus providing communications and other services, where bus resources must be prioritized based on mission.
The [organization] shall define the security safeguards to be employed to protect the availability of system resources.{SV-AC-6}{SC-6,SI-17}
The [spacecraft] shall monitor [Program defined telemetry points] for malicious commanding attempts.{SV-AC-1,SV-AC-2}{SC-7,AU-3(1),AC-17(1)} Source from AEROSPACE REPORT NO. TOR-2019-02178 Vehicle Command Counter (VCC) - Counts received valid commands Rejected Command Counter - Counts received invalid commands Command Receiver On/Off Mode - Indicates times command receiver is accepting commands Command Receivers Received Signal Strength - Analog measure of the amount of received RF energy at the receive frequency Command Receiver Lock Modes - Indicates when command receiver has achieved lock on command signal Telemetry Downlink Modes - Indicates when the satellite’s telemetry was transmitting Cryptographic Modes - Indicates the operating modes of the various encrypted links Received Commands - Log of all commands received and executed by the satellite System Clock - Master onboard clock GPS Ephemeris - Indicates satellite location derived from GPS Signals
The [spacecraft] shall protect the confidentiality and integrity of all transmitted information.{SV-IT-2,SV-AC-7}{SC-8} * The intent as written is for all transmitted traffic to be protected. This includes internal to internal communications and especially outside of the boundary.
The [spacecraft] shall maintain the confidentiality and integrity of information during preparation for transmission and during reception.{SV-IT-2}{SC-8(2)} * Preparation for transmission and during reception includes the aggregation, packing, and transformation options performed prior to transmission and the undoing of those operations that occur upon receipt.
The [spacecraft] software subsystems shall accept [Program defined hazardous] commands only when prerequisite checks are satisfied.{SV-MA-3,SV-AV-7}{SI-10}
The [spacecraft] software subsystems shall identify and reject commands received out-of-sequence when the out-of-sequence commands can cause a hazard/failure or degrade the control of a hazard or mission.{SV-MA-3,SV-AV-7}{SI-10}
The [spacecraft] software subsystems shall perform prerequisite checks for the execution of hazardous commands.{SV-MA-3,SV-AV-7}{SI-10}
The [organization] shall ensure that all viable commands are known to the mission and SV "owner.{SV-AC-8}{SI-10,SI-10(3)} This is a concern for bus re-use. It is possible that the manufacturer left previously coded commands in their syntax rather than starting from a clean slate. This leaves potential backdoors and other functionality the mission does not know about.
The [organization] shall perform analysis of critical (backdoor) commands that could adversely affect mission success if used maliciously.{SV-AC-8}{SI-10,SI-10(3)} Heritage and commercial products often have many residual operational (e.g., hardware commands) and test capabilities that are unidentified or unknown to the end user, perhaps because they were not expressly stated mission requirements. These would never be tested and their effects unknown, and hence, could be used maliciously. Test commands not needed for flight should be deleted from the flight database.
The [spacecraft] shall only use or include [organization]-defined critical commands for the purpose of providing emergency access where commanding authority is appropriately restricted.{SV-AC-8}{SI-10,SI-10(3)} The intent is protect against misuse of critical commands. On potential scenario is where you could use accounts with different privileges, could require an additional passphrase or require entry into a different state or append an additional footer to a critical command. There is room for design flexibility here that can still satisfy this requirement.
The [spacecraft] software subsystems shall discriminate between valid and invalid input into the software and rejects invalid input.{SV-MA-3,SV-AV-7}{SI-10,SI-10(3)}
The [spacecraft] software subsystems shall properly handle spurious input and missing data.{SV-MA-3,SV-AV-7}{SI-10,SI-10(3)}
The [spacecraft] software subsystems shall validate a functionally independent parameter prior to the issuance of any sequence that could remove an inhibit or perform a hazardous action.{SV-MA-3,SV-AV-7}{SI-10(3)}
The [spacecraft] mission/cyber critical commands shall be "complex" and/or diverse from other commands so that a single bit flip could not transform a benign command into a hazardous command.{SV-MA-3,SV-AV-7}{SI-10(5)}
The [spacecraft] software subsystems shall provide at least one independent command for each operator-initiated action used to shut down a function leading to or reducing the control of a hazard.{SV-MA-3,SV-AV-7}{SI-10(5)}
The [spacecraft] shall have failure tolerance on sensors used by software to make mission-critical decisions.{SV-MA-3,SV-AV-7}{SI-13,SI-17}
The [spacecraft] cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.{SV-AV-5,SV-AV-6,SV-AV-7}{SI-17} Cyber-safe mode is using a fail-secure mentality where if there is a malfunction that the spacecraft goes into a fail-secure state where cyber protections like authentication and encryption are still employed (instead of bypassed) and the spacecraft can be restored by authorized commands. The cyber-safe mode should be stored in a high integrity location of the on-board SV so that it cannot be modified by attackers.
The [spacecraft] software subsystems shall detect and recover/transition from detected memory errors to a known cyber-safe state.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall initialize the spacecraft to a known safe state.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall operate securely in off-nominal power conditions, including loss of power and spurious power transients.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall perform an orderly, controlled system shutdown to a known cyber-safe state upon receipt of a termination command or condition.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall recover to a known cyber-safe state when an anomaly is detected.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall safely transition between all predefined, known states.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] shall perform an integrity check of [Program-defined software, firmware, and information] at startup; at [Program-defined transitional states or security-relevant events] {SV-IT-2}{SI-7(1)}
The [organization] shall employ automated tools that provide notification to [Program-defined personnel] upon discovering discrepancies during integrity verification.{SV-IT-2}{SI-7(2)}
The [spacecraft] shall automatically [Selection (one or more):restarts the FSW/processor, performs side swap, audits failure; implements Program-defined security safeguards] when integrity violations are discovered.{SV-IT-2}{SI-7(8)}
The [organization] shall ensure that FMEA/FMECA artifacts are strictly controlled so that particular fault responses are not disclosed via documentation.{SV-AV-5}