Anomalous Flash/EEPROM Memory Checksums Detected

Detection of a checksum mismatch for the flight software's flash / eeprom memory partitions. This could indicate that both the primary and redundant partitions have been corrupted by the malicious action, leading to a permanent denial of service (DoS).

STIX Pattern

[x-opencti-memory:table_ref.name = 'flash_memory' OR x-opencti-memory:table_ref.name = 'eeprom_memory' AND x-opencti-memory:checksum != 'expected_checksum']

SPARTA TTPs

ID Name Description
EX-0004 Compromise Boot Memory Threat actors may manipulate boot memory in order to execute malicious code, bypass internal processes, or DoS the system. This technique can be used to perform other tactics such as Defense Evasion.
EX-0005 Exploit Hardware/Firmware Corruption Threat actors can target the underlying hardware and/or firmware using various TTPs that will be dependent on the specific hardware/firmware. Typically, software tools (e.g., antivirus, antimalware, intrusion detection) can protect a system from threat actors attempting to take advantage of those vulnerabilities to inject malicious code. However, there exist security gaps that cannot be closed by the above-mentioned software tools since they are not stationed on software applications, drivers or the operating system but rather on the hardware itself. Hardware components, like memory modules and caches, can be exploited under specific circumstances thus enabling backdoor access to potential threat actors. In addition to hardware, the firmware itself which often is thought to be software in its own right also provides an attack surface for threat actors. Firmware is programming that's written to a hardware device's non-volatile memory where the content is saved when a hardware device is turned off or loses its external power source. Firmware is written directly onto a piece of hardware during manufacturing and it is used to run on the device and can be thought of as the software that enables hardware to run. In the space vehicle context, firmware and field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic/code is considered equivalent to firmware.
EX-0005.01 Design Flaws Threat actors may target design features/flaws with the hardware design to their advantage to cause the desired impact. Threat actors may utilize the inherent design of the hardware (e.g. hardware timers, hardware interrupts, memory cells), which is intended to provide reliability, to their advantage to degrade other aspects like availability. Additionally, field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic can be exploited just like software code can be exploited. There could be logic/design flaws embedded in the hardware (i.e., FPGA/ASIC) which may be exploitable by a threat actor.
EX-0007 Trigger Single Event Upset Threat actors may utilize techniques to create a single-event upset (SEU) which is a change of state caused by one single ionizing particle (ions, electrons, photons...) striking a sensitive node in a spacecraft(i.e., microprocessor, semiconductor memory, or power transistors). The state change is a result of the free charge created by ionization in or close to an important node of a logic element (e.g. memory "bit"). This can cause unstable conditions on the spacecraft depending on which component experiences the SEU. SEU is a known phenomenon for spacecraft due to high radiation in space, but threat actors may attempt to utilize items like microwaves to create a SEU.
EX-0009.01 Flight Software Threat actors may abuse known or unknown flight software code flaws in order to further the attack campaign. Some FSW suites contain API functionality for operator interaction. Threat actors may seek to exploit these or abuse a vulnerability/misconfiguration to maliciously execute code or commands. In some cases, these code flaws can perpetuate throughout the victim spacecraft, allowing access to otherwise segmented subsystems.
EX-0010 Malicious Code Threat actors may rely on other tactics and techniques in order to execute malicious code on the victim spacecraft. This can be done via compromising the supply chain or development environment in some capacity or taking advantage of known commands. However, once malicious code has been uploaded to the victim spacecraft, the threat actor can then trigger the code to run via a specific command or wait for a legitimate user to trigger it accidently. The code itself can do a number of different things to the hosted payload, subsystems, or underlying OS.
EX-0010.02 Wiper Malware Threat actors may deploy wiper malware, which is a type of malicious software designed to destroy data or render it unusable. Wiper malware can spread through various means, software vulnerabilities (CWE/CVE), or by exploiting weak or stolen credentials.
EX-0010.04 Bootkit Adversaries may use bootkits to persist on systems and evade detection. Bootkits reside at a layer below the operating system and may make it difficult to perform full remediation unless an organization suspects one was used and can act accordingly.
PER-0001 Memory Compromise Threat actors may manipulate memory (boot, RAM, etc.) in order for their malicious code and/or commands to remain on the victim spacecraft. The spacecraft may have mechanisms that allow for the automatic running of programs on system reboot, entering or returning to/from safe mode, or during specific events. Threat actors may target these specific memory locations in order to store their malicious code or file, ensuring that the attack remains on the system even after a reset.