REC-0005 |
Eavesdropping |
Threat actors may seek to capture network communications throughout the ground station and radio frequency (RF) communication used for uplink and downlink communications. RF communication frequencies vary between 30MHz and 60 GHz. Threat actors may capture RF communications using specialized hardware, such as software defined radio (SDR), handheld radio, or a computer with radio demodulator turned to the communication frequency. Network communications may be captured using packet capture software while the threat actor is on the target network. |
|
REC-0005.03 |
Proximity Operations |
Threat actors may capture signals and/or network communications as they travel on-board the vehicle (i.e., EMSEC/TEMPEST), via RF, or terrestrial networks. This information can be decoded to determine commanding and telemetry protocols, command times, and other information that could be used for future attacks. |
IA-0003 |
Crosslink via Compromised Neighbor |
Threat actors may compromise a victim spacecraft via the crosslink communications of a neighboring spacecraft that has been compromised. spacecraft in close proximity are able to send commands back and forth. Threat actors may be able to leverage this access to compromise other spacecraft once they have access to another that is nearby. |
IA-0005 |
Rendezvous & Proximity Operations |
Threat actors may perform a space rendezvous which is a set of orbital maneuvers during which a spacecraft arrives at the same orbit and approach to a very close distance (e.g. within visual contact or close proximity) to a target spacecraft. |
|
IA-0005.01 |
Compromise Emanations |
Threat actors in close proximity may intercept and analyze electromagnetic radiation emanating from crypto equipment and/or the target spacecraft(i.e., main bus) to determine whether the emanations are information bearing. The data could be used to establish initial access. |
|
IA-0005.02 |
Docked Vehicle / OSAM |
Threat actors may leverage docking vehicles to laterally move into a target spacecraft. If information is known on docking plans, a threat actor may target vehicles on the ground or in space to deploy malware to laterally move or execute malware on the target spacecraft via the docking interface. |
|
IA-0005.03 |
Proximity Grappling |
Threat actors may posses the capability to grapple target spacecraft once it has established the appropriate space rendezvous. If from a proximity / rendezvous perspective a threat actor has the ability to connect via docking interface or expose testing (i.e., JTAG port) once it has grappled the target spacecraft, they could perform various attacks depending on the access enabled via the physical connection. |
IA-0008 |
Rogue External Entity |
Threat actors may gain access to a victim spacecraft through the use of a rogue external entity. With this technique, the threat actor does not need access to a legitimate ground station or communication site. |
|
IA-0008.02 |
Rogue Spacecraft |
Threat actors may gain access to a target spacecraft using their own spacecraft that has the capability to maneuver within close proximity to a target spacecraft to carry out a variety of TTPs (i.e., eavesdropping, side-channel, etc.). Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference. |
|
IA-0008.03 |
ASAT/Counterspace Weapon |
Threat actors may utilize counterspace platforms to access/impact spacecraft. These counterspace capabilities vary significantly in the types of effects they create, the level of technological sophistication required, and the level of resources needed to develop and deploy them. These diverse capabilities also differ in how they are employed and how easy they are to detect and attribute and the permanence of the effects they have on their target.*
*https://aerospace.csis.org/aerospace101/counterspace-weapons-101 |
EX-0007 |
Trigger Single Event Upset |
Threat actors may utilize techniques to create a single-event upset (SEU) which is a change of state caused by one single ionizing particle (ions, electrons, photons...) striking a sensitive node in a spacecraft(i.e., microprocessor, semiconductor memory, or power transistors). The state change is a result of the free charge created by ionization in or close to an important node of a logic element (e.g. memory "bit"). This can cause unstable conditions on the spacecraft depending on which component experiences the SEU. SEU is a known phenomenon for spacecraft due to high radiation in space, but threat actors may attempt to utilize items like microwaves to create a SEU. |
EX-0017 |
Kinetic Physical Attack |
Kinetic physical attacks attempt to damage or destroy space- or land-based space assets. They typically are organized into three categories: direct-ascent, co-orbital, and ground station attacks [beyond the focus of SPARTA at this time]. The nature of these attacks makes them easier to attribute and allow for better confirmation of success on the part of the attacker.*
*https://aerospace.csis.org/aerospace101/counterspace-weapons-101 |
|
EX-0017.02 |
Co-Orbital ASAT |
Co-orbital ASAT attacks are when another satellite in orbit is used to attack. The attacking satellite is first placed into orbit, then later maneuvered into an intercepting orbit. This form of attack requires a sophisticated on-board guidance system to successfully steer into the path of another satellite. A co-orbital attack can be a simple space mine with a small explosive that follows the orbital path of the targeted satellite and detonates when within range. Another co-orbital attack strategy is using a kinetic-kill vehicle (KKV), which is any object that can be collided into a target satellite.*
*https://aerospace.csis.org/aerospace101/counterspace-weapons-101 |
EX-0018 |
Non-Kinetic Physical Attack |
A non-kinetic physical attack is when a satellite is physically damaged without any direct contact. Non-kinetic physical attacks can be characterized into a few types: electromagnetic pulses, high-powered lasers, and high-powered microwaves. These attacks have medium possible attribution levels and often provide little evidence of success to the attacker.*
*https://aerospace.csis.org/aerospace101/counterspace-weapons-101 |
|
EX-0018.01 |
Electromagnetic Pulse (EMP) |
An EMP, such as those caused by high-altitude detonation of certain bombs, is an indiscriminate form of attack in space. For example, a nuclear detonation in space releases an electromagnetic pulse (EMP) that would have near immediate consequences for the satellites within range. The detonation also creates a high radiation environment that accelerates the degradation of satellite components in the affected orbits.*
*https://aerospace.csis.org/aerospace101/counterspace-weapons-101 |
|
EX-0018.02 |
High-Powered Laser |
A high-powered laser can be used to permanently or temporarily damage critical satellite components (i.e. solar arrays or optical centers). If directed toward a satellite’s optical center, the attack is known as blinding or dazzling. Blinding, as the name suggests, causes permanent damage to the optics of a satellite. Dazzling causes temporary loss of sight for the satellite. While there is clear attribution of the location of the laser at the time of the attack, the lasers used in these attacks may be mobile, which can make attribution to a specific actor more difficult because the attacker does not have to be in their own nation, or even continent, to conduct such an attack. Only the satellite operator will know if the attack is successful, meaning the attacker has limited confirmation of success, as an attacked nation may not choose to announce that their satellite has been attacked or left vulnerable for strategic reasons. A high-powered laser attack can also leave the targeted satellite disabled and uncontrollable, which could lead to collateral damage if the satellite begins to drift. A higher-powered laser may permanently damage a satellite by overheating its parts. The parts most susceptible to this are satellite structures, thermal control panels, and solar panels.*
*https://aerospace.csis.org/aerospace101/counterspace-weapons-101 |
|
EX-0018.03 |
High-Powered Microwave |
High-powered microwave (HPM) weapons can be used to disrupt or destroy a satellite’s electronics. A “front-door” HPM attack uses a satellite’s own antennas as an entry path, while a “back-door” attack attempts to enter through small seams or gaps around electrical connections and shielding. A front-door attack is more straightforward to carry out, provided the HPM is positioned within the field of view of the antenna that it is using as a pathway, but it can be thwarted if the satellite uses circuits designed to detect and block surges of energy entering through the antenna. In contrast, a back-door attack is more challenging, because it must exploit design or manufacturing flaws, but it can be conducted from many angles relative to the satellite. Both types of attacks can be either reversible or irreversible; however, the attacker may not be able to control the severity of the damage from the attack. Both front-door and back-door HPM attacks can be difficult to attribute to an attacker, and like a laser weapon, the attacker may not know if the attack has been successful. A HPM attack may leave the target satellite disabled and uncontrollable which can cause it to drift into other satellites, creating further collateral damage.*
*https://aerospace.csis.org/aerospace101/counterspace-weapons-101 |
DE-0009 |
Camouflage, Concealment, and Decoys (CCD) |
This technique deals with the more physical aspects of CCD that may be utilized by threat actors. There are numerous ways a threat actor may utilize the physical operating environment to their advantage, including powering down and laying dormant within debris fields as well as launching EMI attacks during space-weather events. |
|
DE-0009.02 |
Space Weather |
Space weather and its associated hazards imposed on spacecraft are a well-studied field of their own. However, it is also important to note the potential for threat actors to take advantage of heightened periods of solar activity to conduct electromagnetic interference (EMI) operations as they may be falsely attributed to natural events. |
LM-0003 |
Constellation Hopping via Crosslink |
Threat actors may attempt to command another neighboring spacecraft via crosslink. spacecraft in close proximity are often able to send commands back and forth. Threat actors may be able to leverage this access to compromise another spacecraft. |
LM-0004 |
Visiting Vehicle Interface(s) |
Threat actors may move from one spacecraft to another through visiting vehicle interfaces. When a vehicle docks with a spacecraft, many programs are automatically triggered in order to ensure docking mechanisms are locked. This entails several data points and commands being sent to and from the spacecraft and the visiting vehicle. If a threat actor were to compromise a visiting vehicle, they could target these specific programs in order to send malicious commands to the victim spacecraft once docked. |
EXF-0002 |
Side-Channel Attack |
Threat actors may use a side-channel attack attempts to gather information by measuring or exploiting indirect effects of the spacecraft. Information within the spacecraft can be extracted through these side-channels in which sensor data is analyzed in non-trivial ways to recover subtle, hidden or unexpected information. A series of measurements of a side-channel constitute an identifiable signature which can then be matched against a signature database to identify target information, without having to explicitly decode the side-channel. |
|
EXF-0002.01 |
Power Analysis Attacks |
Threat actors can analyze power consumption on-board the spacecraft to exfiltrate information. In power analysis attacks, the threat actor studies the power consumption of devices, especially cryptographic modules. Power analysis attacks require close proximity to a sensor node, such that a threat actor can measure the power consumption of the sensor node. There are two types of power analysis, namely simple power analysis (SPA) and differential power analysis (DPA). In differential power analysis, the threat actor studies the power analysis and is able to apply mathematical and statistical principles to determine the intermediate values. |
|
EXF-0002.02 |
Electromagnetic Leakage Attacks |
Threat actors can leverage electromagnetic emanations to obtain sensitive information. The electromagnetic radiations attain importance when they are hardware generated emissions, especially emissions from the cryptographic module. Electromagnetic leakage attacks have been shown to be more successful than power analysis attacks on chicards. If proper protections are not in place on the spacecraft, the circuitry is exposed and hence leads to stronger emanations of EM radiations. If the circuitry is exposed, it provides an easier environment to study the electromagnetic emanations from each individual component. |
|
EXF-0002.03 |
Traffic Analysis Attacks |
In a terrestrial environment, threat actors use traffic analysis attacks to analyze traffic flow to gather topological information. This traffic flow can divulge information about critical nodes, such as the aggregator node in a sensor network. In the space environment, specifically with relays and constellations, traffic analysis can be used to understand the energy capacity of spacecraft node and the fact that the transceiver component of a spacecraft node consumes the most power. The spacecraft nodes in a constellation network limit the use of the transceiver to transmit or receive information either at a regulated time interval or only when an event has been detected. This generally results in an architecture comprising some aggregator spacecraft nodes within a constellation network. These spacecraft aggregator nodes are the sensor nodes whose primary purpose is to relay transmissions from nodes toward the ground station in an efficient manner, instead of monitoring events like a normal node. The added functionality of acting as a hub for information gathering and preprocessing before relaying makes aggregator nodes an attractive target to side channel attacks. A possible side channel attack could be as simple as monitoring the occurrences and duration of computing activities at an aggregator node. If a node is frequently in active states (instead of idle states), there is high probability that the node is an aggregator node and also there is a high probability that the communication with the node is valid. Such leakage of information is highly undesirable because the leaked information could be strategically used by threat actors in the accumulation phase of an attack. |
|
EXF-0002.04 |
Timing Attacks |
Threat actors can leverage timing attacks to exfiltrate information due to variances in the execution timing for different sub-systems in the spacecraft (i.e., cryptosystem). In spacecraft, due to the utilization of processors with lower processing powers (i.e. slow), this becomes all the more important because slower processors will enhance even small difference in computation time. Every operation in a spacecraft takes time to execute, and the time can differ based on the input; with precise measurements of the time for each operation, a threat actor can work backwards to the input. Finding secrets through timing information may be significantly easier than using cryptanalysis of known plaintext, ciphertext pairs. Sometimes timing information is combined with cryptanalysis to increase the rate of information leakage. |
|
EXF-0002.05 |
Thermal Imaging attacks |
Threat actors can leverage thermal imaging attacks (e.g., infrared images) to measure heat that is emitted as a means to exfiltrate information from spacecraft processors. Thermal attacks rely on temperature profiling using sensors to extract critical information from the chip(s). The availability of highly sensitive thermal sensors, infrared cameras, and techniques to calculate power consumption from temperature distribution [7] has enhanced the effectiveness of these attacks. As a result, side-channel attacks can be performed by using temperature data without measuring power pins of the chip. |
EXF-0005 |
Proximity Operations |
Threat actors may leverage the lack of emission security or tempest controls to exfiltrate information using a visiting spacecraft. This is similar to side-channel attacks but leveraging a visiting spacecraft to measure the signals for decoding purposes. |