Countermeasures represent security concepts and classes of technologies that can be used to prevent a technique or sub-technique from being successfully executed. The below table view not only describes the countermeasure, it also provides informative references to the NIST Risk Management Framework (RMF) revision 5 control identifier. Each NIST control ID is a hyperlink to more information on the control itself. This mapping is meant to be informative and provide traceability to common standards that are being leveraged within the space community. In addition to the table view, there is a Defense-in-Depth (DiD) view that provides the countermeasures overlaid onto Aerospace's DiD model for space systems which was discussed in TOR 2021-01333 REV A. When selecting a specific countermeasure the following information will be displayed: description of the countermeasure, the best segment for countermeasure deployment, any informative references as well as any techniques that the countermeasure addresses. The mapping to countermeasure to technique(s) are a one to many relationship. For the best segment for countermeasure deployment, this is meant to articulate the ideal place to deploy the countermeasure leveraging the following choices: space segment, the development environment, or the ground segment. The space segment is considered to be the spacecraft or spacecrafts if within a constellation. The development segment captures the factories, hardware foundries, the software development organization as well as the Assembly, Test and Launch Operations (ATLO) facilities. The ground segment is meant to capture the operational and maintenance areas for the ground system. This includes the mission operations environments, the antenna environments, the back haul networks, as well as any management network segments for vendors or commercial entities.
Please view the blog post A Look into SPARTA Countermeasures to learn more about SPARTA’s approach to countermeasures and its goal to ensure space system engineers are informed on security principles to mitigate adversary TTPs.
ID | Name | Description | NIST Rev5 Controls | D3FEND | ISO 27001 | |
CM0000 | Countermeasure Not Identified | This technique is a result of utilizing TTPs to create an impact and the applicable countermeasures are associated with the TTPs leveraged to achieve the impact | ||||
CM0001 | Protect Sensitive Information | Organizations should look to identify and properly classify mission sensitive design/operations information (e.g., fault management approach) and apply access control accordingly. Any location (ground system, contractor networks, etc.) storing design information needs to ensure design info is protected from exposure, exfiltration, etc. Space system sensitive information may be classified as Controlled Unclassified Information (CUI) or Company Proprietary. Space system sensitive information can typically include a wide range of candidate material: the functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, CUI, proprietary, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission. Sensitive documentation should only be accessed by personnel with defined roles and a need to know. Well established access controls (roles, encryption at rest and transit, etc.) and data loss prevention (DLP) technology are key countermeasures. The DLP should be configured for the specific data types in question. | AC-3(11) AC-4(23) AC-4(25) AC-4(6) CA-3 CM-12 CM-12(1) PL-8 PL-8(1) PM-11 PM-17 SA-3 SA-3(1) SA-3(2) SA-4(12) SA-5 SA-8 SA-9(7) SC-16 SC-8(1) SC-8(3) SI-21 SI-23 SR-12 SR-7 | D3-AI D3-AVE D3-NVA D3-CH D3-CBAN D3-CTS D3-PA D3-FAPA D3-SAOR | A.8.4 A.8.11 A.8.10 A.5.14 A.8.21 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.33 7.5.1 7.5.2 7.5.3 A.5.37 A.8.27 A.8.28 A.5.33 A.8.10 A.5.22 | |
CM0008 | Security Testing Results | As penetration testing and vulnerability scanning is a best practice, protecting the results from these tests and scans is equally important. These reports and results typically outline detailed vulnerabilities and how to exploit them. As with countermeasure CM0001, protecting sensitive information from disclosure to threat actors is imperative. | AC-3(11) CA-8 CM-4 CP-4 RA-5 RA-5(11) SA-11 SA-11(5) SA-4(5) SA-5 | D3-AI D3-AVE | A.8.4 A.8.9 A.5.29 A.5.30 A.8.8 7.5.1 7.5.2 7.5.3 A.5.37 A.8.29 A.8.30 | |
CM0009 | Threat Intelligence Program | A threat intelligence program helps an organization generate their own threat intelligence information and track trends to inform defensive priorities and mitigate risk. Leverage all-source intelligence services or commercial satellite imagery to identify and track adversary infrastructure development/acquisition. Countermeasures for this attack fall outside the scope of the mission in the majority of cases. | PM-16 PM-16(1) PM-16(1) RA-10 RA-3 RA-3(2) RA-3(3) SA-3 SA-8 SR-8 | D3-PH D3-AH D3-NM D3-NVA D3-SYSM D3-SYSVA | A.5.7 A.5.7 6.1.2 8.2 9.3.2 A.8.8 A.5.7 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 | |
CM0020 | Threat modeling | Use threat modeling, attack surface analysis, and vulnerability analysis to inform the current development process using analysis from similar systems, components, or services where applicable. Reduce attack surface where possible based on threats. | CA-3 CM-4 CP-2 PL-8 PL-8(1) RA-3 SA-11 SA-11(2) SA-11(6) SA-15(6) SA-15(8) SA-2 SA-3 SA-4(9) SA-8 | D3-AI D3-AVE D3-SWI D3-HCI D3-NM D3-LLM D3-ALLM D3-PLLM D3-PLM D3-APLM D3-PPLM D3-SYSM D3-DEM D3-SVCDM D3-SYSDM | A.5.14 A.8.21 A.8.9 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.8 6.1.2 8.2 9.3.2 A.8.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.8.29 A.8.30 | |
CM0022 | Criticality Analysis | Conduct a criticality analysis to identify mission critical functions, critical components, and data flows and reduce the vulnerability of such functions and components through secure system design. Focus supply chain protection on the most critical components/functions. Leverage other countermeasures like segmentation and least privilege to protect the critical components. | CP-2 CP-2(8) PL-8 PL-8(1) PM-11 PM-17 PM-30 PM-30(1) PM-32 RA-3 RA-3(1) RA-9 RA-9 SA-11 SA-15(3) SA-2 SA-3 SA-4(5) SA-4(9) SA-8 SA-8(3) SC-32(1) SC-7(29) SR-1 SR-1 SR-2 SR-2(1) SR-3 SR-3(2) SR-3(3) SR-5(1) SR-7 | D3-AVE D3-OSM D3-IDA D3-SJA D3-AI D3-DI D3-SWI D3-NNI D3-HCI D3-NM D3-PLM D3-AM D3-SYSM D3-SVCDM D3-SYSDM D3-SYSVA D3-OAM D3-ORA | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 6.1.2 8.2 9.3.2 A.8.8 A.5.22 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.8.29 A.8.30 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.22 | |
CM0024 | Anti-counterfeit Hardware | Develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including tamper resistance and protection against the introduction of malicious code or hardware. | AC-14 AC-20(5) CM-7(9) PL-8 PL-8(1) PM-30 PM-30(1) RA-3(1) SA-10(3) SA-10(4) SA-11 SA-3 SA-4(5) SA-8 SA-8(13) SA-9 SR-1 SR-10 SR-11 SR-11 SR-11(3) SR-11(3) SR-2 SR-2(1) SR-3 SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5(2) SR-6(1) SR-9 SR-9(1) | D3-AI D3-SWI D3-HCI D3-FEMC D3-DLIC D3-FV | A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29 | |
CM0025 | Supplier Review | Conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services. | PL-8 PL-8(1) PL-8(2) PM-30 PM-30(1) RA-3(1) SA-11 SA-17 SA-2 SA-3 SA-8 SA-9 SR-11 SR-3(1) SR-3(3) SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5(1) SR-5(2) SR-6 SR-6 | D3-OAM D3-ODM | A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 A.8.25 A.8.27 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29 A.5.22 | |
CM0026 | Original Component Manufacturer | Components/Software that cannot be procured from the original component manufacturer or their authorized franchised distribution network should be approved by the supply chain board or equivalent to prevent and detect counterfeit and fraudulent parts, materials, and software. | AC-20(5) PL-8 PL-8(1) PL-8(2) PM-30 PM-30(1) RA-3(1) SA-10(4) SA-11 SA-3 SA-8 SA-9 SR-1 SR-1 SR-11 SR-2 SR-2(1) SR-3 SR-3(1) SR-3(3) SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5 SR-5(1) SR-5(2) | D3-OAM D3-ODM D3-AM D3-FV D3-SFV | A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29 | |
CM0027 | ASIC/FPGA Manufacturing | Application-Specific Integrated Circuit (ASIC) / Field Programmable Gate Arrays should be developed by accredited trusted foundries to limit potential hardware-based trojan injections. | AC-14 PL-8 PL-8(1) PL-8(2) PM-30 PM-30(1) RA-3(1) SA-10(3) SA-11 SA-3 SA-8 SA-8(13) SA-9 SI-3 SR-1 SR-1 SR-11 SR-2 SR-2(1) SR-3 SR-5 SR-5(2) SR-6(1) | D3-OAM D3-ODM D3-AM D3-FV D3-SFV | A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 A.8.7 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.20 A.5.21 A.5.23 A.8.29 | |
CM0028 | Tamper Protection | Perform physical inspection of hardware to look for potential tampering. Leverage tamper proof protection where possible when shipping/receiving equipment. | AC-14 CA-8(3) CM-7(9) MA-7 PL-8 PL-8(1) PL-8(2) PM-30 PM-30(1) RA-3(1) SA-10(3) SA-10(4) SA-11 SA-3 SA-4(5) SA-4(9) SA-8 SA-8(13) SA-9 SC-51 SR-1 SR-1 SR-10 SR-11 SR-11(3) SR-2 SR-2(1) SR-3 SR-4(3) SR-4(4) SR-5 SR-5 SR-5(2) SR-6(1) SR-9 SR-9(1) | D3-PH D3-AH D3-RFS D3-FV | A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.20 A.5.21 A.5.23 A.8.29 | |
CM0041 | User Training | Train users to be aware of access or manipulation attempts by a threat actor to reduce the risk of successful spear phishing, social engineering, and other techniques that involve user interaction. Ensure that role-based security-related training is provided to personnel with assigned security roles and responsibilities: (i) before authorizing access to the information system or performing assigned duties; (ii) when required by information system changes; and (iii) at least annually if not otherwise defined. | AT-2 AT-2(1) AT-2(4) AT-2(4) AT-2(5) AT-2(6) AT-3 AT-3(3) CP-2 IR-2(3) SA-9 SR-11(1) | D3-OAM D3-ORA | 7.3 A.6.3 A.8.7 A.6.3 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 | |
CM0052 | Insider Threat Protection | Establish policy and procedures to prevent individuals (i.e., insiders) from masquerading as individuals with valid access to areas where commanding of the spacecraft is possible. Establish an Insider Threat Program to aid in the prevention of people with authorized access performing malicious activities. | AC-14 AC-3(11) AC-3(13) AC-3(15) AC-6 AT-2 AT-2(2) AT-2(4) AT-2(5) AT-2(6) AU-10 AU-12 AU-13 AU-6 AU-7 CA-7 CP-2 IA-12 IA-12(1) IA-12(2) IA-12(3) IA-12(4) IA-12(5) IA-12(6) IA-4 IR-2(3) IR-4 IR-4(6) IR-4(7) MA-7 MP-7 PE-2 PL-8 PL-8(1) PM-12 PM-14 PS-3 PS-4 PS-5 PS-8 RA-10 SA-3 SA-8 SC-38 SC-7 SI-4 SR-11(2) | D3-OAM D3-AM D3-OM D3-CH D3-SPP D3-MFA D3-UAP D3-UBA | A.8.4 A.5.15 A.8.2 A.8.18 7.3 A.6.3 A.8.7 A.5.25 A.6.8 A.8.15 A.8.15 A.8.12 A.8.16 9.1 9.3.2 9.3.3 A.5.36 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.16 A.5.25 A.5.26 A.5.27 A.5.10 A.7.10 A.7.2 A.5.8 A.6.1 A.5.11 A.6.5 A.5.11 A.6.5 7.3 A.6.4 A.5.7 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.16 | |
CM0054 | Two-Person Rule | Utilize a two-person system to achieve a high level of security for systems with command level access to the spacecraft. Under this rule all access and actions require the presence of two authorized people at all times. | AC-14 AC-3(13) AC-3(15) AC-3(2) CP-2 IA-12 IA-12(1) IA-12(2) IA-12(3) IA-12(4) IA-12(5) IA-12(6) PE-3 | D3-OAM D3-AM D3-ODM D3-OM D3-MFA | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.7.1 A.7.2 A.7.3 A.7.4 | |
CM0074 | Distributed Constellations | A distributed system uses a number of nodes, working together, to perform the same mission or functions as a single node. In a distributed constellation, the end user is not dependent on any single satellite but rather uses multiple satellites to derive a capability. A distributed constellation can complicate an adversary’s counterspace planning by presenting a larger number of targets that must be successfully attacked to achieve the same effects as targeting just one or two satellites in a less-distributed architecture. GPS is an example of a distributed constellation because the functioning of the system is not dependent on any single satellite or ground station; a user can use any four satellites within view to get a time and position fix.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-10(6) CP-11 CP-13 CP-2 CP-2(2) CP-2(3) CP-2(4) CP-2(5) CP-2(6) PE-21 | D3-AI D3-NNI D3-SYSM D3-DEM D3-SVCDM D3-SYSVA | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.29 A.5.29 | |
CM0075 | Proliferated Constellations | Proliferated satellite constellations deploy a larger number of the same types of satellites to similar orbits to perform the same missions. While distribution relies on placing more satellites or payloads on orbit that work together to provide a complete capability, proliferation is simply building more systems (or maintaining more on-orbit spares) to increase the constellation size and overall capacity. Proliferation can be an expensive option if the systems being proliferated are individually expensive, although highly proliferated systems may reduce unit costs in production from the learning curve effect and economies of scale.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-10(6) CP-11 CP-13 CP-2 CP-2(2) CP-2(3) CP-2(4) CP-2(5) CP-2(6) PE-21 | D3-AI D3-NNI D3-SYSM D3-DEM D3-SVCDM D3-SYSVA | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.29 A.5.29 | |
CM0076 | Diversified Architectures | In a diversified architecture, multiple systems contribute to the same mission using platforms and payloads that may be operating in different orbits or in different domains. For example, wideband communications to fixed and mobile users can be provided by the military’s WGS system, commercial SATCOM systems, airborne communication nodes, or terrestrial networks. The Chinese BeiDou system for positioning, navigation, and timing uses a diverse set of orbits, with satellites in geostationary orbit (GEO), highly inclined GEO, and medium Earth orbit (MEO). Diversification reduces the incentive for an adversary to attack any one of these systems because the impact on the overall mission will be muted since systems in other orbits or domains can be used to compensate for losses. Moreover, attacking space systems in diversified orbits may require different capabilities for each orbital regime, and the collateral damage from such attacks, such as orbital debris, could have a much broader impact politically and economically.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-11 CP-13 CP-2 CP-2(2) CP-2(3) CP-2(4) CP-2(5) CP-2(6) | D3-AI D3-NNI D3-SYSM D3-DEM D3-SVCDM D3-SYSVA | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.29 A.5.29 | |
CM0077 | Space Domain Awareness | The credibility and effectiveness of many other types of defenses are enabled or enhanced by the ability to quickly detect, characterize, and attribute attacks against space systems. Space domain awareness (SDA) includes identifying and tracking space objects, predicting where objects will be in the future, monitoring the space environment and space weather, and characterizing the capabilities of space objects and how they are being used. Exquisite SDA—information that is more timely, precise, and comprehensive than what is publicly available—can help distinguish between accidental and intentional actions in space. SDA systems include terrestrial-based optical, infrared, and radar systems as well as space-based sensors, such as the U.S. military’s Geosynchronous Space Situational Awareness Program (GSSAP) inspector satellites. Many nations have SDA systems with various levels of capability, and an increasing number of private companies (and amateur space trackers) are developing their own space surveillance systems, making the space environment more transparent to all users.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-13 CP-2(3) CP-2(4) CP-2(5) CP-2(7) PE-20 PE-6 SI-4(17) | D3-APLM D3-PM D3-HCI D3-SYSM | A.5.29 A.7.4 A.8.16 A.5.10 | |
CM0078 | Space-Based Radio Frequency Mapping | Space-based RF mapping is the ability to monitor and analyze the RF environment that affects space systems both in space and on Earth. Similar to exquisite SDA, space-based RF mapping provides space operators with a more complete picture of the space environment, the ability to quickly distinguish between intentional and unintentional interference, and the ability to detect and geolocate electronic attacks. RF mapping can allow operators to better characterize jamming and spoofing attacks from Earth or from other satellites so that other defenses can be more effectively employed.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | PE-20 RA-6 SI-4(14) | D3-APLM D3-DEM D3-SVCDM D3-SYSM | A.5.10 | |
CM0079 | Maneuverability | Satellite maneuver is an operational tactic that can be used by satellites fitted with chemical thrusters to avoid kinetic and some directed energy ASAT weapons. For unguided projectiles, a satellite can be commanded to move out of their trajectory to avoid impact. If the threat is a guided projectile, like most direct-ascent ASAT and co-orbital ASAT weapons, maneuver becomes more difficult and is only likely to be effective if the satellite can move beyond the view of the onboard sensors on the guided warhead.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-10(6) CP-13 CP-2 CP-2(1) CP-2(3) CP-2(4) CP-2(5) PE-20 PE-21 | None | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.29 A.5.10 | |
CM0080 | Stealth Technology | Space systems can be operated and designed in ways that make them difficult to detect and track. Similar to platforms in other domains, stealthy satellites can use a smaller size, radar-absorbing coatings, radar-deflecting shapes, radar jamming and spoofing, unexpected or optimized maneuvers, and careful control of reflected radar, optical, and infrared energy to make themselves more difficult to detect and track. For example, academic research has shown that routine spacecraft maneuvers can be optimized to avoid detection by known sensors.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-10(6) CP-13 SC-30 SC-30(5) | D3-PH | A.5.29 | |
CM0081 | Defensive Jamming and Spoofing | A jammer or spoofer can be used to disrupt sensors on an incoming kinetic ASAT weapon so that it cannot steer itself effectively in the terminal phase of flight. When used in conjunction with maneuver, this could allow a satellite to effectively “dodge” a kinetic attack. Similar systems could also be used to deceive SDA sensors by altering the reflected radar signal to change the location, velocity, and number of satellites detected, much like digital radio frequency memory (DRFM) jammers used on many military aircraft today. A spacebased jammer can also be used to disrupt an adversary’s ability to communicate.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQGate with an ASAT weapon. | CP-10(6) CP-13 CP-2 CP-2(1) CP-2(5) CP-2(7) PE-20 | D3-DO | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.29 A.5.10 | |
CM0082 | Deception and Decoys | Deception can be used to conceal or mislead others on the “location, capability, operational status, mission type, and/or robustness” of a satellite. Public messaging, such as launch announcements, can limit information or actively spread disinformation about the capabilities of a satellite, and satellites can be operated in ways that conceal some of their capabilities. Another form of deception could be changing the capabilities or payloads on satellites while in orbit. Satellites with swappable payload modules could have on-orbit servicing vehicles that periodically move payloads from one satellite to another, further complicating the targeting calculus for an adversary because they may not be sure which type of payload is currently on which satellite. Satellites can also use tactical decoys to confuse the sensors on ASAT weapons and SDA systems. A satellite decoy can consist of an inflatable device designed to mimic the size and radar signature of a satellite, and multiple decoys can be stored on the satellite for deployment when needed. Electromagnetic decoys can also be used in space that mimic the RF signature of a satellite, similar to aircraft that use airborne decoys, such as the ADM-160 Miniature Air-launched Decoy (MALD).* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | SC-26 SC-30 | D3-DE D3-CHN D3-SHN D3-IHN D3-DO D3-DF D3-DNR D3-DP D3-DPR D3-DST D3-DUC | ||
CM0083 | Antenna Nulling and Adaptive Filtering | Satellites can be designed with antennas that “null” or minimize signals from a particular geographic region on the surface of the Earth or locations in space where jamming is detected. Nulling is useful when jamming is from a limited number of detectable locations, but one of the downsides is that it can also block transmissions from friendly users that fall within the nulled area. If a jammer is sufficiently close to friendly forces, the nulling antenna may not be able to block the jammer without also blocking legitimate users. Adaptive filtering, in contrast, is used to block specific frequency bands regardless of where these transmissions originate. Adaptive filtering is useful when jamming is consistently within a particular range of frequencies because these frequencies can be filtered out of the signal received on the satellite while transmissions can continue around them. However, a wideband jammer could interfere with a large enough portion of the spectrum being used that filtering out the jammed frequencies would degrade overall system performance. * *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | SC-40 SI-4(14) | D3-PH | ||
CM0084 | Physical Seizure | A space vehicle capable of docking with, manipulating, or maneuvering other satellites or pieces of debris can be used to thwart spacebased attacks or mitigate the effects after an attack has occurred. Such a system could be used to physically seize a threatening satellite that is being used to attack or endanger other satellites or to capture a satellite that has been disabled or hijacked for nefarious purposes. Such a system could also be used to collect and dispose of harmful orbital debris resulting from an attack. A key limitation of a physical seizure system is that each satellite would be time- and propellant-limited depending on the orbit in which it is stored. A system stored in GEO, for example, would not be well positioned to capture an object in LEO because of the amount of propellant required to maneuver into position. Physical seizure satellites may need to be stored on Earth and deployed once they are needed to a specific orbit to counter a specific threat.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-13 PE-20 | D3-AM | A.5.29 A.5.10 | |
CM0085 | Electromagnetic Shielding | Satellite components can be vulnerable to the effects of background radiation in the space environment and deliberate attacks from HPM and electromagnetic pulse weapons. The effects can include data corruption on memory chips, processor resets, and short circuits that permanently damage components.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-13 PE-18 PE-19 PE-21 | D3-PH D3-RFS | A.5.29 A.5.10 A.7.5 A.7.8 A.7.5 A.7.8 A.8.12 | |
CM0086 | Filtering and Shuttering | Filters and shutters can be used on remote sensing satellites to protect sensors from laser dazzling and blinding. Filters can protect sensors by only allowing light of certain wavelengths to reach the sensors. Filters are not very effective against lasers operating at the same wavelengths of light the sensors are designed to detect because a filter that blocks these wavelengths would also block the sensor from its intended mission. A shutter acts by quickly blocking or diverting all light to a sensor once an anomaly is detected or a threshold is reached, which can limit damage but also temporarily interrupts the collection of data.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-13 PE-18 SC-5 SC-5(3) | D3-PH | A.5.29 A.5.10 A.7.5 A.7.8 | |
CM0087 | Defensive Dazzling/Blinding | Laser systems can be used to dazzle or blind the optical or infrared sensors on an incoming ASAT weapon in the terminal phase of flight. This is similar to the laser infrared countermeasures used on aircraft to defeat heat-seeking missiles. Blinding an ASAT weapon’s guidance system and then maneuvering to a new position (if necessary) could allow a satellite to effectively “dodge” a kinetic attack. It could also be used to dazzle or blind the optical sensors on inspector satellites to prevent them from imaging a satellite that wants to keep its capabilities concealed or to frustrate adversary SDA efforts.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-10(6) CP-13 CP-2 CP-2(1) CP-2(5) CP-2(7) PE-20 | None | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.29 A.5.10 | |
CM0002 | COMSEC | A component of cybersecurity to deny unauthorized persons information derived from telecommunications and to ensure the authenticity of such telecommunications. COMSEC includes cryptographic security, transmission security, emissions security, and physical security of COMSEC material. It is imperative to utilize secure communication protocols with strong cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission. Systems should also maintain the confidentiality and integrity of information during preparation for transmission and during reception. Spacecraft should not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). The cryptographic mechanisms should identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters. | AC-17 AC-17(1) AC-17(10) AC-17(10) AC-17(2) AC-18 AC-18(1) AC-2(11) AC-3(10) CA-3 IA-4(9) IA-5 IA-5(7) IA-7 PL-8 PL-8(1) SA-8(18) SA-9(6) SC-10 SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-13 SC-16(3) SC-28(1) SC-28(3) SC-7 SC-7(10) SC-7(11) SC-7(18) SC-7(5) SC-8(1) SC-8(3) SI-10 SI-10(3) SI-10(5) SI-10(6) SI-19(4) SI-3(8) | D3-ET D3-MH D3-MAN D3-MENCR D3-NTF D3-ITF D3-OTF D3-CH D3-DTP D3-NTA D3-CAA D3-DNSTA D3-IPCTA D3-NTCD D3-RTSD D3-PHDURA D3-PMAD D3-CSPP D3-MA D3-SMRA D3-SRA | A.5.14 A.6.7 A.8.1 A.8.16 A.5.14 A.8.1 A.8.20 A.5.14 A.8.21 A.5.16 A.5.17 A.5.8 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.12 A.5.33 A.8.20 A.8.24 A.8.24 A.8.26 A.5.31 A.5.33 A.8.11 | |
CM0030 | Crypto Key Management | Leverage best practices for crypto key management as defined by organization like NIST or the National Security Agency. Leverage only approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria. Encryption key handling should be performed outside of the onboard software and protected using cryptography. Encryption keys should be restricted so that they cannot be read via any telecommands. | PL-8 PL-8(1) SA-3 SA-4(5) SA-8 SA-9(6) SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-28(3) SC-8(1) | D3-CH D3-CP | A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.33 A.8.24 | |
CM0031 | Authentication | Authenticate all communication sessions (crosslink and ground stations) for all commands before establishing remote connections using bidirectional authentication that is cryptographically based. Adding authentication on the spacecraft bus and communications on-board the spacecraft is also recommended. | AC-14 AC-17 AC-17(10) AC-17(10) AC-17(2) AC-18 AC-18(1) IA-2 IA-3(1) IA-4 IA-4(9) IA-7 PL-8 PL-8(1) SA-3 SA-4(5) SA-8 SA-8(15) SA-8(9) SC-16 SC-16(2) SC-32(1) SC-7(11) SC-8(1) SI-14(3) | D3-MH D3-MAN D3-CH D3-BAN D3-MFA D3-TAAN D3-CBAN | A.5.14 A.6.7 A.8.1 A.5.14 A.8.1 A.8.20 A.5.16 A.5.16 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.33 | |
CM0033 | Relay Protection | Implement relay and replay-resistant authentication mechanisms for establishing a remote connection or connections on the spacecraft bus. | AC-17(10) AC-17(10) IA-2(8) IA-3 IA-3(1) IA-4 IA-7 SC-13 SC-23 SC-7 SC-7(11) SC-7(18) SI-10 SI-10(5) SI-10(6) SI-3(8) | D3-ITF D3-NTA D3-OTF | A.5.16 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.24 A.8.26 A.5.31 | |
CM0073 | Traffic Flow Analysis Defense | Utilizing techniques to assure traffic flow security and confidentiality to mitigate or defeat traffic analysis attacks or reduce the value of any indicators or adversary inferences. This may be a subset of COMSEC protections, but the techniques would be applied where required to links that carry TT&C and/or data transmissions (to include on-board the spacecraft) where applicable given value and attacker capability. Techniques may include but are not limited to methods to pad or otherwise obfuscate traffic volumes/duration and/or periodicity, concealment of routing information and/or endpoints, or methods to frustrate statistical analysis. | SC-8 SI-4(15) | D3-NTA D3-ANAA D3-RPA D3-NTCD | A.5.10 A.5.14 A.8.20 A.8.26 | |
CM0003 | TEMPEST | The spacecraft should protect system components, associated data communications, and communication buses in accordance with TEMPEST controls to prevent side channel / proximity attacks. Encompass the spacecraft critical components with a casing/shielding so as to prevent access to the individual critical components. | PE-19 PE-19(1) PE-21 SC-8(3) | D3-PH D3-RFS | A.7.5 A.7.8 A.8.12 | |
CM0040 | Shared Resource Leakage | Prevent unauthorized and unintended information transfer via shared system resources. Ensure that processes reusing a shared system resource (e.g., registers, main memory, secondary storage) do not have access to information (including encrypted representations of information) previously stored in that resource during a prior use by a process after formal release of that resource back to the system or reuse | AC-4(23) AC-4(25) SC-2(2) SC-32(1) SC-4 SC-49 SC-50 SC-7(29) | D3-MAC D3-PAN D3-HBPI | A.8.11 A.8.10 | |
CM0049 | Machine Learning Data Integrity | When AI/ML is being used for mission critical operations, the integrity of the training data set is imperative. Data poisoning against the training data set can have detrimental effects on the functionality of the AI/ML. Fixing poisoned models is very difficult so model developers need to focus on countermeasures that could either block attack attempts or detect malicious inputs before the training cycle occurs. Regression testing over time, validity checking on data sets, manual analysis, as well as using statistical analysis to find potential injects can help detect anomalies. | AC-3(11) SC-28 SC-28(1) SC-8 SC-8(2) SI-7 SI-7(1) SI-7(2) SI-7(5) SI-7(6) SI-7(8) | D3-PH D3-FE D3-DENCR D3-PA D3-FA | A.8.4 A.5.10 A.5.14 A.8.20 A.8.26 A.5.10 A.5.33 | |
CM0050 | On-board Message Encryption | In addition to authentication on-board the spacecraft bus, encryption is also recommended to protect the confidentiality of the data traversing the bus. | AC-4 AC-4(23) AC-4(24) AC-4(26) AC-4(31) AC-4(32) PL-8 PL-8(1) SA-3 SA-8 SA-8(18) SA-8(9) SA-9(6) SC-13 SC-16 SC-16(2) SC-16(3) SC-8(1) SC-8(3) SI-19(4) SI-4(10) SI-4(25) | D3-MH D3-MENCR D3-ET | A.5.14 A.8.22 A.8.23 A.8.11 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.33 A.8.24 A.8.26 A.5.31 A.8.11 | |
CM0004 | Development Environment Security | In order to secure the development environment, the first step is understanding all the devices and people who interact with it. Maintain an accurate inventory of all people and assets that touch the development environment. Ensure strong multi-factor authentication is used across the development environment, especially for code repositories, as threat actors may attempt to sneak malicious code into software that's being built without being detected. Use zero-trust access controls to the code repositories where possible. For example, ensure the main branches in repositories are protected from injecting malicious code. A secure development environment requires change management, privilege management, auditing and in-depth monitoring across the environment. | AC-17 AC-18 AC-20(5) AC-3(11) AC-3(13) AC-3(15) CA-8 CM-11 CM-14 CM-2(2) CM-3(2) CM-3(7) CM-3(8) CM-4(1) CM-7(8) CM-7(8) CP-2(8) MA-7 PL-8 PL-8(1) PL-8(2) PM-30 PM-30(1) RA-3(1) RA-3(2) RA-5 RA-5(2) RA-9 SA-10 SA-10(4) SA-11 SA-11 SA-11(1) SA-11(2) SA-11(2) SA-11(4) SA-11(5) SA-11(5) SA-11(6) SA-11(7) SA-11(7) SA-11(7) SA-11(8) SA-15 SA-15(3) SA-15(5) SA-15(7) SA-15(8) SA-17 SA-3 SA-3 SA-3(1) SA-3(2) SA-4(3) SA-4(3) SA-4(5) SA-4(5) SA-4(9) SA-8 SA-9 SC-38 SI-2 SI-2(6) SR-1 SR-1 SR-11 SR-2 SR-2(1) SR-3 SR-3(2) SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5 SR-5(2) SR-6 SR-6(1) SR-6(1) SR-7 | D3-AI D3-AVE D3-SWI D3-HCI D3-NNI D3-OAM D3-AM D3-OM D3-DI D3-MFA D3-CH D3-OTP D3-BAN D3-PA D3- FAPA D3- DQSA D3-IBCA D3-PCSV D3-PSMD | A.8.4 A.5.14 A.6.7 A.8.1 A.5.14 A.8.1 A.8.20 A.8.9 A.8.9 A.8.31 A.8.19 A.5.30 A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.8.8 A.5.22 A.5.2 A.5.8 A.8.25 A.8.31 A.8.33 A.8.28 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.9 A.8.28 A.8.30 A.8.32 A.8.29 A.8.30 A.8.28 A.5.8 A.8.25 A.8.28 A.8.25 A.8.27 A.6.8 A.8.8 A.8.32 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29 A.5.22 A.5.22 | |
CM0007 | Software Version Numbers | When using COTS or Open-Source, protect the version numbers being used as these numbers can be cross referenced against public repos to identify Common Vulnerability Exposures (CVEs) and exploits available. | AC-3(11) CM-2 SA-11 SA-5 | D3-AI D3-SWI | A.8.4 A.8.9 7.5.1 7.5.2 7.5.3 A.5.37 A.8.29 A.8.30 | |
CM0010 | Update Software | Perform regular software updates to mitigate exploitation risk. Software updates may need to be scheduled around operational down times. Release updated versions of the software/firmware systems incorporating security-relevant updates, after suitable regression testing, at a frequency no greater than mission-defined frequency [i.e., 30 days]. Ideally old versions of software are removed after upgrading but restoration states (i.e., gold images) are recommended to remain on the system. | CM-3(2) CM-3(7) CM-3(8) CM-4 CM-4(1) CM-7(4) SA-10(4) SA-11 SA-3 SA-8 SA-9 SI-2 SI-2(6) | D3-SU | A.8.9 A.8.9 A.8.9 A.8.31 A.8.19 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 A.6.8 A.8.8 A.8.32 | |
CM0011 | Vulnerability Scanning | Vulnerability scanning is used to identify known software vulnerabilities (excluding custom-developed software - ex: COTS and Open-Source). Utilize scanning tools to identify vulnerabilities in dependencies and outdated software (i.e., software composition analysis). Ensure that vulnerability scanning tools and techniques are employed that facilitate interoperability among tools and automate parts of the vulnerability management process by using standards for: (1) Enumerating platforms, custom software flaws, and improper configurations; (2) Formatting checklists and test procedures; and (3) Measuring vulnerability impact. | CM-10(1) RA-3 RA-5 RA-5(11) RA-5(3) SA-11 SA-15(7) SA-3 SA-4(5) SA-8 SI-3 | D3-AI D3-NM D3-AVE D3-NVA D3-PM D3-FBA D3-OSM D3-SFA D3-PA D3-PSA D3-PLA D3-PCSV D3-FA D3-DA D3-ID D3-HD D3-UA | 6.1.2 8.2 9.3.2 A.8.8 A.8.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.8.29 A.8.30 A.8.7 | |
CM0012 | Software Bill of Materials | Generate Software Bill of Materials (SBOM) against the entire software supply chain and cross correlate with known vulnerabilities (e.g., Common Vulnerabilities and Exposures) to mitigate known vulnerabilities. Protect the SBOM according to countermeasures in CM0001. | CM-7(5) RA-5 CM-10 CM-10(1) CM-11 CM-11 |