PL-8 - Security and Privacy Architectures

a. Develop security and privacy architectures for the system that: 1. Describe the requirements and approach to be taken for protecting the confidentiality, integrity, and availability of organizational information; 2. Describe the requirements and approach to be taken for processing personally identifiable information to minimize privacy risk to individuals; 3. Describe how the architectures are integrated into and support the enterprise architecture; and 4. Describe any assumptions about, and dependencies on, external systems and services; b. Review and update the architectures [Assignment: organization-defined frequency] to reflect changes in the enterprise architecture; and c. Reflect planned architecture changes in security and privacy plans, Concept of Operations (CONOPS), criticality analysis, organizational procedures, and procurements and acquisitions.


Informational References

ISO 27001

ID: PL-8
Enhancements:  1 | 2

Countermeasures Covered by Control

ID Name Description D3FEND
CM0001 Protect Sensitive Information Organizations should look to identify and properly classify mission sensitive design/operations information (e.g., fault management approach) and apply access control accordingly. Any location (ground system, contractor networks, etc.) storing design information needs to ensure design info is protected from exposure, exfiltration, etc. Space system sensitive information may be classified as Controlled Unclassified Information (CUI) or Company Proprietary. Space system sensitive information can typically include a wide range of candidate material: the functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, CUI, proprietary, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission. Sensitive documentation should only be accessed by personnel with defined roles and a need to know. Well established access controls (roles, encryption at rest and transit, etc.) and data loss prevention (DLP) technology are key countermeasures. The DLP should be configured for the specific data types in question. D3-AI D3-AVE D3-NVA D3-CH D3-CBAN D3-CTS D3-PA D3-FAPA D3-SAOR
CM0020 Threat modeling Use threat modeling, attack surface analysis, and vulnerability analysis to inform the current development process using analysis from similar systems, components, or services where applicable. Reduce attack surface where possible based on threats. D3-AI D3-AVE D3-SWI D3-HCI D3-NM D3-LLM D3-ALLM D3-PLLM D3-PLM D3-APLM D3-PPLM D3-SYSM D3-DEM D3-SVCDM D3-SYSDM
CM0022 Criticality Analysis Conduct a criticality analysis to identify mission critical functions, critical components, and data flows and reduce the vulnerability of such functions and components through secure system design. Focus supply chain protection on the most critical components/functions. Leverage other countermeasures like segmentation and least privilege to protect the critical components. D3-AVE D3-OSM D3-IDA D3-SJA D3-AI D3-DI D3-SWI D3-NNI D3-HCI D3-NM D3-PLM D3-AM D3-SYSM D3-SVCDM D3-SYSDM D3-SYSVA D3-OAM D3-ORA
CM0024 Anti-counterfeit Hardware Develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including tamper resistance and protection against the introduction of malicious code or hardware.  D3-AI D3-SWI D3-HCI D3-FEMC D3-DLIC D3-FV
CM0025 Supplier Review Conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services. D3-OAM D3-ODM
CM0026 Original Component Manufacturer Components/Software that cannot be procured from the original component manufacturer or their authorized franchised distribution network should be approved by the supply chain board or equivalent to prevent and detect counterfeit and fraudulent parts, materials, and software. D3-OAM D3-ODM D3-AM D3-FV D3-SFV
CM0027 ASIC/FPGA Manufacturing Application-Specific Integrated Circuit (ASIC) / Field Programmable Gate Arrays should be developed by accredited trusted foundries to limit potential hardware-based trojan injections. D3-OAM D3-ODM D3-AM D3-FV D3-SFV
CM0028 Tamper Protection Perform physical inspection of hardware to look for potential tampering. Leverage tamper proof protection where possible when shipping/receiving equipment. D3-PH D3-AH D3-RFS D3-FV
CM0052 Insider Threat Protection Establish policy and procedures to prevent individuals (i.e., insiders) from masquerading as individuals with valid access to areas where commanding of the spacecraft is possible. Establish an Insider Threat Program to aid in the prevention of people with authorized access performing malicious activities. D3-OAM D3-AM D3-OM D3-CH D3-SPP D3-MFA D3-UAP D3-UBA
CM0002 COMSEC A component of cybersecurity to deny unauthorized persons information derived from telecommunications and to ensure the authenticity of such telecommunications. COMSEC includes cryptographic security, transmission security, emissions security, and physical security of COMSEC material. It is imperative to utilize secure communication protocols with strong cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission. Systems should also maintain the confidentiality and integrity of information during preparation for transmission and during reception. Spacecraft should not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). The cryptographic mechanisms should identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters. D3-ET D3-MH D3-MAN D3-MENCR D3-NTF D3-ITF D3-OTF D3-CH D3-DTP D3-NTA D3-CAA D3-DNSTA D3-IPCTA D3-NTCD D3-RTSD D3-PHDURA D3-PMAD D3-CSPP D3-MA D3-SMRA D3-SRA
CM0030 Crypto Key Management Leverage best practices for crypto key management as defined by organization like NIST or the National Security Agency. Leverage only approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria. Encryption key handling should be performed outside of the onboard software and protected using cryptography. Encryption keys should be restricted so that they cannot be read via any telecommands. D3-CH D3-CP
CM0031 Authentication Authenticate all communication sessions (crosslink and ground stations) for all commands before establishing remote connections using bidirectional authentication that is cryptographically based. Adding authentication on the spacecraft bus and communications on-board the spacecraft is also recommended. D3-MH D3-MAN D3-CH D3-BAN D3-MFA D3-TAAN D3-CBAN
CM0050 On-board Message Encryption In addition to authentication on-board the spacecraft bus, encryption is also recommended to protect the confidentiality of the data traversing the bus. D3-MH D3-MENCR D3-ET
CM0004 Development Environment Security In order to secure the development environment, the first step is understanding all the devices and people who interact with it. Maintain an accurate inventory of all people and assets that touch the development environment. Ensure strong multi-factor authentication is used across the development environment, especially for code repositories, as threat actors may attempt to sneak malicious code into software that's being built without being detected. Use zero-trust access controls to the code repositories where possible. For example, ensure the main branches in repositories are protected from injecting malicious code. A secure development environment requires change management, privilege management, auditing and in-depth monitoring across the environment. D3-AI D3-AVE D3-SWI D3-HCI D3-NNI D3-OAM D3-AM D3-OM D3-DI D3-MFA D3-CH D3-OTP D3-BAN D3-PA D3- FAPA D3- DQSA D3-IBCA D3-PCSV D3-PSMD
CM0017 Coding Standard Define acceptable coding standards to be used by the software developer. The mission should have automated means to evaluate adherence to coding standards. The coding standard should include the acceptable software development language types as well. The language should consider the security requirements, scalability of the application, the complexity of the application, development budget, development time limit, application security, available resources, etc. The coding standard and language choice must ensure proper security constructs are in place. D3-AI D3-AVE D3-SWI D3-DCE D3-EHPV D3-ORA D3-FEV D3-FR D3-ER D3-PE D3-PT D3-PS
CM0039 Least Privilege Employ the principle of least privilege, allowing only authorized processes which are necessary to accomplish assigned tasks in accordance with system functions. Ideally maintain a separate execution domain for each executing process. D3-MAC D3-EI D3-HBPI D3-KBPI D3-PSEP D3-MBT D3-PCSV D3-LFP D3-UBA
CM0046 Long Duration Testing Perform testing using hardware or simulation/emulation where the test executes over a long period of time (30+ days). This testing will attempt to flesh out race conditions or time-based attacks. D3-SJA D3-PM D3-OSM D3-SDM D3-UBA D3-SYSVA
CM0047 Operating System Security Ensure spacecraft's operating system is scrutinized/whitelisted and has received adequate software assurance previously. The operating system should be analyzed for its attack surface and non-utilized features should be stripped from the operating system. Many real-time operating systems contain features that are not necessary for spacecraft operations and only increase the attack surface. D3-AVE D3-OSM D3-EHB D3-SDM D3-SFA D3-SBV D3-PA D3-SCA D3-FCA
CM0055 Secure Command Mode(s) Provide additional protection modes for commanding the spacecraft. These can be where the spacecraft will restrict command lock based on geographic location of ground stations, special operational modes within the flight software, or even temporal controls where the spacecraft will only accept commands during certain times. D3-AH D3-ACH D3-MFA D3-OTP
CM0069 Process White Listing Simple process ID whitelisting on the firmware level could impede attackers from instigating unnecessary processes which could impact the spacecraft D3-MAC D3-EAL D3-EDL
CM0005 Ground-based Countermeasures This countermeasure is focused on the protection of terrestrial assets like ground networks and development environments/contractor networks, etc. Traditional detection technologies and capabilities would be applicable here. Utilizing resources from NIST CSF to properly secure these environments using identify, protect, detect, recover, and respond is likely warranted. Additionally, NISTIR 8401 may provide resources as well since it was developed to focus on ground-based security for space systems (https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8401.ipd.pdf). Furthermore, the MITRE ATT&CK framework provides IT focused TTPs and their mitigations https://attack.mitre.org/mitigations/enterprise/. Several recommended NIST 800-53 Rev5 controls are provided for reference when designing ground systems/networks. Nearly all D3FEND Techniques apply to Ground
CM0034 Monitor Critical Telemetry Points Monitor defined telemetry points for malicious activities (i.e., jamming attempts, commanding attempts (e.g., command modes, counters, etc.)). This would include valid/processed commands as well as commands that were rejected. Telemetry monitoring should synchronize with ground-based Defensive Cyber Operations (i.e., SIEM/auditing) to create a full space system situation awareness from a cybersecurity perspective. D3-NTA D3-PM D3-PMAD D3-RTSD
CM0035 Protect Authenticators Protect authenticator content from unauthorized disclosure and modification. D3-CE D3-ANCI D3-CA D3-ACA D3-PCA D3-CRO D3-CTS D3-SPP
CM0070 Alternate Communications Paths Establish alternate communications paths to reduce the risk of all communications paths being affected by the same incident. D3-NM D3-NTPM
CM0006 Cloaking Safe-mode Attempt to cloak when in safe-mode and ensure that when the system enters safe-mode it does not disable critical security features. Ensure basic protections like encryption are still being used on the uplink/downlink to prevent eavesdropping. D3-PH
CM0032 On-board Intrusion Detection & Prevention Utilize on-board intrusion detection/prevention system that monitors the mission critical components or systems and audit/logs actions. The IDS/IPS should have the capability to respond to threats (initial access, execution, persistence, evasion, exfiltration, etc.) and it should address signature-based attacks along with dynamic never-before seen attacks using machine learning/adaptive technologies. The IDS/IPS must integrate with traditional fault management to provide a wholistic approach to faults on-board the spacecraft. Spacecraft should select and execute safe countermeasures against cyber-attacks.  These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker — with or without ground support. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system. D3-FA D3-DA D3-FCR D3-FH D3-ID D3-IRA D3-HD D3-IAA D3-FHRA D3-NTA D3-PMAD D3-RTSD D3-ANAA D3-CA D3-CSPP D3-ISVA D3-PM D3-SDM D3-SFA D3-SFV D3-SICA D3-USICA D3-FBA D3-FEMC D3-FV D3-OSM D3-PFV D3-EHB D3-IDA D3-MBT D3-SBV D3-PA D3-PSMD D3-PSA D3-SEA D3-SSC D3-SCA D3-FAPA D3-IBCA D3-PCSV D3-FCA D3-PLA D3-UBA D3-RAPA D3-SDA D3-UDTA D3-UGLPA D3-ANET D3-AZET D3-JFAPA D3-LAM D3-NI D3-RRID D3-NTF D3-ITF D3-OTF D3-EI D3-EAL D3-EDL D3-HBPI D3-IOPR D3-KBPI D3-MAC D3-SCF
CM0042 Robust Fault Management Ensure fault management system cannot be used against the spacecraft. Examples include: safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of telemetry to cause action from ground, or some sort of proximity operation to cause spacecraft to go into safe mode. Understanding the safing procedures and ensuring they do not put the spacecraft in a more vulnerable state is key to building a resilient spacecraft. D3-AH D3-EHPV D3-PSEP D3-PH D3-SCP
CM0044 Cyber-safe Mode Provide the capability to enter the spacecraft into a configuration-controlled and integrity-protected state representing a known, operational cyber-safe state (e.g., cyber-safe mode). Spacecraft should enter a cyber-safe mode when conditions that threaten the platform are detected.   Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode, authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and software functions to pre-attack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on equipment still available after a cyber-attack. The goal is for the spacecraft to resume full mission operations. If not possible, a reduced level of mission capability should be achieved. Cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.                                                  D3-PH D3-EI D3-NI D3-BA
CM0051 Fault Injection Redundancy To counter fault analysis attacks, it is recommended to use redundancy to catch injected faults. For certain critical functions that need protected against fault-based side channel attacks, it is recommended to deploy multiple implementations of the same function. Given an input, the spacecraft can process it using the various implementations and compare the outputs. A selection module could be incorporated to decide the valid output. Although sensor nodes have limited resources, critical regions usually comprise the crypto functions, which must be secured. D3-AH D3-SYSVA D3-ORA
CM0014 Secure boot Software/Firmware must verify a trust chain that extends through the hardware root of trust, boot loader, boot configuration file, and operating system image, in that order. The trusted boot/RoT computing module should be implemented on radiation tolerant burn-in (non-programmable) equipment.  D3-PH D3-BA D3-DLIC D3-TBI
CM0037 Disable Physical Ports Provide the capability for data connection ports or input/output devices (e.g., JTAG) to be disabled or removed prior to spacecraft operations. D3-EI D3-IOPR
CM0038 Segmentation Identify the key system components or capabilities that require isolation through physical or logical means. Information should not be allowed to flow between partitioned applications unless explicitly permitted by security policy. Isolate mission critical functionality from non-mission critical functionality by means of an isolation boundary (implemented via partitions) that controls access to and protects the integrity of, the hardware, software, and firmware that provides that functionality. Enforce approved authorizations for controlling the flow of information within the spacecraft and between interconnected systems based on the defined security policy that information does not leave the spacecraft boundary unless it is encrypted. Implement boundary protections to separate bus, communications, and payload components supporting their respective functions. D3-NI D3-BDI D3-NTF D3-ITF D3-OTF D3-EI D3-HBPI D3-KBPI D3-MAC D3-RRID D3-EAL D3-EDL D3-IOPR D3-SCF
CM0048 Resilient Position, Navigation, and Timing If available, use an authentication mechanism that allows GNSS receivers to verify the authenticity of the GNSS information and of the entity transmitting it, to ensure that it comes from a trusted source. Have fault-tolerant authoritative time sourcing for the spacecraft's clock. The spacecraft should synchronize the internal system clocks for each processor to the authoritative time source when the time difference is greater than the FSW-defined interval. If Spacewire is utilized, then the spacecraft should adhere to mission-defined time synchronization standard/protocol to synchronize time across a Spacewire network with an accuracy around 1 microsecond. D3-MH D3-MAN
CM0057 Tamper Resistant Body Using a tamper resistant body can increase the one-time cost of the sensor node but will allow the node to conserve the power usage when compared with other countermeasures. D3-PH D3-RFS
CM0029 TRANSEC Utilize TRANSEC in order to prevent interception, disruption of reception, communications deception, and/or derivation of intelligence by analysis of transmission characteristics such as signal parameters or message externals. For example, jam-resistant waveforms can be utilized to improve the resistance of radio frequency signals to jamming and spoofing. Note: TRANSEC is that field of COMSEC which deals with the security of communication transmissions, rather than that of the information being communicated. D3-MH D3-MAN D3-MENCR D3-NTA D3-DNSTA D3-ISVA D3-NTCD D3-RTA D3-PMAD D3-FC D3-CSPP D3-ANAA D3-RPA D3-IPCTA D3-NTCD D3-NTPM D3-TAAN

Space Threats Tagged by Control

ID Description
SV-SP-3 Introduction of malicious software such as a virus, worm, Distributed Denial-Of-Service (DDOS) agent, keylogger, rootkit, or Trojan Horse
SV-SP-11 Software defined radios - SDR is also another computer, networked to other parts of the spacecraft that could be pivoted to by an attacker and infected with malicious code. Once access to an SDR is gained, the attacker could alter what the SDR thinks is correct frequencies and settings to communicate with the ground.
SV-MA-7 Exploit ground system and use to maliciously to interact with the spacecraft
SV-MA-6 Not planning for security on SV or designing in security from the beginning
SV-SP-4 General supply chain interruption or manipulation

Sample Requirements

Requirement Rationale/Additional Guidance/Notes
The [organization] shall protect the security plan from unauthorized disclosure and modification.{SV-MA-6}{AC-3,PL-2,PL-7}
The [organization] shall implement a verifiable flaw remediation process into the developmental and operational configuration management process.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-5,SA-3,SA-3(1),SA-11,SI-3,SI-3(10)} The verifiable process should also include a cross reference to mission objectives and impact statements. Understanding the flaws discovered and how they correlate to mission objectives will aid in prioritization.
The [organization] shall verify that the scope of security testing/evaluation provides complete coverage of required security controls (to include abuse cases and penetration testing) at the depth of testing defined in the test documents.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,RA-5(3),SA-11(5),SA-11(7)} * The frequency of testing should be driven by Program completion events and updates. * Examples of approaches are static analyses, dynamic analyses, binary analysis, or a hybrid of the three approaches
The [organization] shall maintain evidence of the execution of the security assessment plan and the results of the security testing/evaluation.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11}
The [organization] shall create and implement a security assessment plan that includes: (1) The types of analyses, testing, evaluation, and reviews of all software and firmware components; (2) The degree of rigor to be applied to include abuse cases and/or penetration testing; and (3) The types of artifacts produced during those processes.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11,SA-11(5)} The security assessment plan should include evaluation of mission objectives in relation to the security of the mission. Assessments should not only be control based but also functional based to ensure mission is resilient against failures of controls.
The [organization] shall determine the vulnerabilities/weaknesses that require remediation, and coordinate the timeline for that remediation, in accordance with the analysis of the vulnerability scan report, the mission assessment of risk, and mission needs.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-5,CM-3,RA-5,RA-7,SI-3,SI-3(10)}
The [organization] shall employ dynamic analysis (e.g.using simulation, penetration testing, fuzzing, etc.) to identify software/firmware weaknesses and vulnerabilities in developed and incorporated code (open source, commercial, or third-party developed code).{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-8,CM-10(1),RA-3(1),SA-11(5),SA-11(8),SA-11(9),SI-3,SI-7(10)}
The [organization] shall perform penetration testing/analysis: (1) On potential system elements before accepting the system; (2) As a realistic simulation of the active adversary’s known adversary tactics, techniques, procedures (TTPs), and tools; and (3) Throughout the lifecycle on physical and logical systems, elements, and processes.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CA-8(1),SA-9,SA-11(5),SR-5(2)} Penetration testing should be performed throughout the lifecycle on physical and logical systems, elements, and processes including: (1) Hardware, software, and firmware development processes; (2) Shipping/handling procedures; (3) Personnel and physical security programs; (4) Configuration management tools/measures to maintain provenance; and (5) Any other programs, processes, or procedures associated with the production/distribution of supply chain elements. 
The [organization] shall maintain a list of suppliers and potential suppliers used, and the products that they supply to include software.{SV-SP-3,SV-SP-4,SV-SP-11}{CM-10,PL-8(2),PM-30,SA-8(9),SA-8(11)} Ideally you have diversification with suppliers
The [organization] shall test software and firmware updates related to flaw remediation for effectiveness and potential side effects on mission systems in a separate test environment before installation.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-3,CM-3(1),CM-3(2),CM-4(1),CM-4(2),CM-10(1),SA-8(31),SA-11(9),SI-2,SI-3,SI-3(10),SI-7(10),SI-7(12),SR-5(2)} This requirement is focused on software and firmware flaws. If hardware flaw remediation is required, refine the requirement to make this clear. 
The [organization] shall release updated versions of the mission information systems incorporating security-relevant software and firmware updates, after suitable regression testing, at a frequency no greater than [Program-defined frequency [90 days]].{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-3(2),CM-4(1)} On-orbit patching/upgrades may be necessary if vulnerabilities are discovered after launch. The system should have the ability to update software post-launch.
The [organization] shall develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including support tamper resistance and provide a level of protection against the introduction of malicious code or hardware.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CM-3(8),CM-7(9),PM-30,SA-8(9),SA-8(11),SA-9,SA-10(3),SA-19,SC-51,SR-4(3),SR-4(4),SR-5(2),SR-11}
The [organization] shall prohibit the use of binary or machine-executable code from sources with limited or no warranty and without the provision of source code.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-7(8)}
The [organization] shall conduct a criticality analysis to identify mission critical functions and critical components and reduce the vulnerability of such functions and components through secure system design.{SV-SP-3,SV-SP-4,SV-AV-7,SV-MA-4}{CP-2,CP-2(8),PL-7,PM-11,PM-30(1),RA-3(1),RA-9,SA-8(9),SA-8(11),SA-8(25),SA-12,SA-14,SA-15(3),SC-7(29),SR-1} During SCRM, criticality analysis will aid in determining supply chain risk. For mission critical functions/components, extra scrutiny must be applied to ensure supply chain is secured.
The [organization] shall report counterfeit information system components to [organization] officials. {SV-SP-4}{IR-6,IR-6(2),PM-30,SA-19,SR-11}
The [organization] shall report identified systems or system components containing software affected by recently announced cybersecurity-related software flaws (and potential vulnerabilities resulting from those flaws) to [organization] officials with cybersecurity responsibilities.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-11}{IR-6,IR-6(2),SI-2,SI-3,SI-4(12),SR-4(4)}
The [organization] shall plan and coordinate security-related activities affecting the spacecraft with groups associated with systems from which the spacecraft is inheriting satisfaction of controls before conducting such activities in order to reduce the impact on other organizational entities.{SV-MA-6}{PL-2}
The [organization] shall develop a security plan for the spacecraft.{SV-MA-6}{PL-2,PL-7,PM-1,SA-8(29),SA-8(30)}
The [organization] shall use all-source intelligence analysis of suppliers and potential suppliers of the information system, system components, or system services to inform engineering, acquisition, and risk management decisions.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{PM-16,PM-30,RA-2,RA-3(1),RA-3(2),RA-7,SA-9,SA-12(8),SR-5(2)} * The Program should also consider sub suppliers and potential sub suppliers. * All-source intelligence of suppliers that the organization may use includes: (1) Defense Intelligence Agency (DIA) Threat Assessment Center (TAC), the enterprise focal point for supplier threat assessments for the DOD acquisition community risks; (2) Other U.S. Government resources including: (a) Government Industry Data Exchange Program (GIDEP) – Database where government and industry can record issues with suppliers, including counterfeits; and (b) System for Award Management (SAM) – Database of companies that are barred from doing business with the US Government. 
The [organization] shall request threat analysis of suppliers of critical components and manage access to and control of threat analysis products containing U.S.person information.{SV-SP-3,SV-SP-4,SV-SP-11}{PM-16,PM-30(1),RA-3(1),SA-9,SA-12,SR-1} The intent of this requirement is to address supply chain concerns on hardware and software vendors. Not required for trusted suppliers accredited to the Defense Microelectronic Activity (DMEA). If the Program intends to use a supplier not accredited by DMEA, the government customer should be notified as soon as possible. If the Program has internal processes to vet suppliers, it may meet this requirement. All software used and its origins must be included in the SBOM and be subjected to internal and Government vulnerability scans.
The [organization] shall maintain documentation tracing the strategies, tools, and methods implemented to mitigate supply chain risk .{SV-SP-3,SV-SP-4,SV-AV-7}{PM-30,RA-3(1),SA-12(1),SR-5} Examples include: (1) Transferring a portion of the risk to the developer or supplier through the use of contract language and incentives; (2) Using contract language that requires the implementation of SCRM throughout the system lifecycle in applicable contracts and other acquisition and assistance instruments (grants, cooperative agreements, Cooperative Research and Development Agreements (CRADAs), and other transactions). Within the DOD some examples include: (a) Language outlined in the Defense Acquisition Guidebook section 13.13. Contracting; (b) Language requiring the use of protected mechanisms to deliver elements and data about elements, processes, and delivery mechanisms; (c) Language that articulates that requirements flow down supply chain tiers to sub-prime suppliers. (3) Incentives for suppliers that: (a) Implement required security safeguards and SCRM best practices; (b) Promote transparency into their organizational processes and security practices; (c) Provide additional vetting of the processes and security practices of subordinate suppliers, critical information system components, and services; and (d) Implement contract to reduce SC risk down the contract stack. (4) Gaining insight into supplier security practices; (5) Using contract language and incentives to enable more robust risk management later in the lifecycle; (6) Using a centralized intermediary or “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary;
The [organization] shall protect against supply chain threats to the system, system components, or system services by employing security safeguards as defined by NIST SP 800-161 Rev.1.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{PM-30,RA-3(1),SA-8(9),SA-8(11),SA-12,SI-3,SR-1} The chosen supply chain safeguards should demonstrably support a comprehensive, defense-in-breadth information security strategy. Safeguards should include protections for both hardware and software. Program should define their critical components (HW & SW) and identify the supply chain protections, approach/posture/process.
The [organization] shall use the threat and vulnerability analyses of the as-built system, system components, or system services to inform and direct subsequent testing/evaluation of the as-built system, component, or service.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-3(3),SA-11(2),SA-15(8),SI-3}
The [organization] shall ensure that the vulnerability scanning tools (e.g., static analysis and/or component analysis tools) used include the capability to readily update the list of potential information system vulnerabilities to be scanned.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,RA-5(1),RA-5(3),SI-3}
The [organization] shall perform vulnerability analysis and risk assessment of all systems and software.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,RA-5(3),SA-15(7),SI-3}
The [organization] shall ensure that vulnerability scanning tools and techniques are employed that facilitate interoperability among tools and automate parts of the vulnerability management process by using standards for: (1) Enumerating platforms, custom software flaws, and improper configurations; (2) Formatting checklists and test procedures; and (3) Measuring vulnerability impact.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,RA-5(3),SI-3} Component/Origin scanning looks for open-source libraries/software that may be included into the baseline and looks for known vulnerabilities and open-source license violations.
The [organization] shall perform static binary analysis of all firmware that is utilized on the spacecraft.{SV-SP-7,SV-SP-11}{RA-5,SA-10,SA-11,SI-7(10)} Many commercial products/parts are utilized within the system and should be analyzed for security weaknesses. Blindly accepting the firmware is free of weakness is unacceptable for high assurance missions. The intent is to not blindly accept firmware from unknown sources and assume it is secure. This is meant to apply to firmware the vendors are not developing internally. In-house developed firmware should be going through the vendor's own testing program and have high assurance it is secure. When utilizing firmware from other sources, "expecting" does not meet this requirement. Each supplier needs to provide evidence to support that claim that their firmware they are getting is genuine and secure.
The [organization] shall perform static source code analysis for all available source code looking for [[organization]-defined Top CWE List] weaknesses using complimentary set of static code analysis tools (i.e.more than one).{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,SA-11(1),SA-15(7)}
The [organization] shall analyze vulnerability/weakness scan reports and results from security control assessments.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,SI-3}
The [organization] shall ensure that the list of potential system vulnerabilities scanned is updated [prior to a new scan] {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5(2),SI-3}
The [organization] shall perform configuration management during system, component, or service during [design; development; implementation; operations].{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-10}
The [organization] shall review proposed changes to the spacecraft, assessing both mission and security impacts.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-10,CM-3(2)}
The [organization] shall correct flaws identified during security testing/evaluation.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11} Flaws that impact the mission objectives should be prioritized.
The [organization] shall perform [Selection (one or more): unit; integration; system; regression] testing/evaluation at [Program-defined depth and coverage].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11} The depth needs to include functional testing as well as negative/abuse testing.
The [organization] shall create prioritized list of software weakness classes (e.g., Common Weakness Enumerations) to be used during static code analysis for prioritization of static analysis results.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(1),SA-15(7)} The prioritized list of CWEs should be created considering operational environment, attack surface, etc. Results from the threat modeling and attack surface analysis should be used as inputs into the CWE prioritization process. There is also a CWSS (https://cwe.mitre.org/cwss/cwss_v1.0.1.html) process that can be used to prioritize CWEs. The prioritized list of CWEs can help with tools selection as well as you select tools based on their ability to detect certain high priority CWEs.
The [organization] shall use threat modeling and vulnerability analysis to inform the current development process using analysis from similar systems, components, or services where applicable.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(2),SA-15(8)}
The [organization] shall perform and document threat and vulnerability analyses of the as-built system, system components, or system services.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(2),SI-3}
The [organization] shall perform a manual code review of all flight code.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(4)}
The [organization] shall conduct an Attack Surface Analysis and reduce attack surfaces to a level that presents a low level of compromise by an attacker.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(6),SA-15(5)}
The [organization] shall define acceptable coding languages to be used by the software developer.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15}
The [organization] shall define acceptable secure coding standards for use by the software developers.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15}
The [organization] shall have automated means to evaluate adherence to coding standards.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15,SA-15(7),RA-5} Manual review cannot scale across the code base; you must have a way to scale in order to confirm your coding standards are being met. The intent is for automated means to ensure code adheres to a coding standard.
The [organization] shall perform component analysis (a.k.a.origin analysis) for developed or acquired software.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15(7),RA-5}
The [organization] shall document the spacecraft's security architecture, and how it is established within and is an integrated part of the Program's mission security architecture.{SV-MA-6}{SA-17}
The [organization] shall require subcontractors developing information system components or providing information system services (as appropriate) to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} Select the particular subcontractors, software vendors, and manufacturers based on the criticality analysis performed for the Program Protection Plan and the criticality of the components that they supply. 
The [organization] shall correct reported cybersecurity-related information system flaws.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SI-2} * Although this requirement is stated to specifically apply to cybersecurity-related flaws, the Program office may choose to broaden it to all SV flaws. * This requirement is allocated to the Program, as it is presumed, they have the greatest knowledge of the components of the system and when identified flaws apply. 
The [organization] shall identify, report, and coordinate correction of cybersecurity-related information system flaws.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SI-2}
The [organization] shall develop and implement anti-counterfeit policy and procedures, in coordination with the [CIO], that is demonstrably consistent with the anti-counterfeit policy defined by the Program office.{SV-SP-4,SV-SP-11}{SR-11}
The [organization] shall employ [organization]-defined techniques to limit harm from potential adversaries identifying and targeting the Program supply chain.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-3(2),SC-38} Examples of security safeguards that the organization should consider implementing to limit the harm from potential adversaries targeting the organizational supply chain, are: (1) Using trusted physical delivery mechanisms that do not permit access to the element during delivery (ship via a protected carrier, use cleared/official couriers, or a diplomatic pouch); (2) Using trusted electronic delivery of products and services (require downloading from approved, verification-enhanced sites); (3) Avoiding the purchase of custom configurations, where feasible; (4) Using procurement carve outs (i.e., exclusions to commitments or obligations), where feasible; (5) Using defensive design approaches; (6) Employing system OPSEC principles; (7) Employing a diverse set of suppliers; (8) Employing approved vendor lists with standing reputations in industry; (9) Using a centralized intermediary and “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary Employing inventory management policies and processes; (10) Using flexible agreements during each acquisition and procurement phase so that it is possible to meet emerging needs or requirements to address supply chain risk without requiring complete revision or re-competition of an acquisition or procurement; (11) Using international, national, commercial or government standards to increase potential supply base; (12) Limiting the disclosure of information that can become publicly available; and (13) Minimizing the time between purchase decisions and required delivery. 
The [organization] shall employ the [organization]-defined approaches for the purchase of the system, system components, or system services from suppliers.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-5} This could include tailored acquisition strategies, contract tools, and procurement methods.
The [organization] (and Prime Contractor) shall conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-6}
The [organization] shall employ [Selection (one or more): independent third-party analysis, Program penetration testing, independent third-party penetration testing] of [Program-defined supply chain elements, processes, and actors] associated with the system, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-6(1)}
The [organization] shall employ [Program-defined Operations Security (OPSEC) safeguards] to protect supply chain-related information for the system, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-7,SC-38,CP-2(8)} OPSEC safeguards may include: (1) Limiting the disclosure of information needed to design, develop, test, produce, deliver, and support the element for example, supplier identities, supplier processes, potential suppliers, security requirements, design specifications, testing and evaluation result, and system/component configurations, including the use of direct shipping, blind buys, etc.; (2) Extending supply chain awareness, education, and training for suppliers, intermediate users, and end users; (3) Extending the range of OPSEC tactics, techniques, and procedures to potential suppliers, contracted suppliers, or sub-prime contractor tier of suppliers; and (4) Using centralized support and maintenance services to minimize direct interactions between end users and original suppliers.
The [organization] shall require the developer of the system, system component, or system services to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} Examples of good security practices would be using defense-in-depth tactics across the board, least-privilege being implemented, two factor authentication everywhere possible, using DevSecOps, implementing and validating adherence to secure coding standards, performing static code analysis, component/origin analysis for open source, fuzzing/dynamic analysis with abuse cases, etc.
The [organization] should have requirements/controls for all ground/terrestrial systems covering: Data Protection, Ground Software, Endpoints, Networks, Computer Network Defense / Incident Response, Perimeter Security, Physical Controls, and Prevention Program (SSP, PPP, and Training).See NIST 800-53 and CNSSI 1253 for guidance on ground security {SV-MA-7}
The [spacecraft] shall require multi-factor authorization for all spacecraft [applications or operating systems] updates within the spacecraft.{SV-SP-9,SV-SP-11}{AC-3(2),CM-3(8),CM-5,PM-12,SA-8(8),SA-8(31),SA-10(2),SI-3(8),SI-7(12),SI-10(6)} The intent is for multiple checks to be performed prior to executing these SV SW updates. One action is mere act of uploading the SW to the spacecraft. Another action could be check of digital signature (ideal but not explicitly required) or hash or CRC or a checksum. Crypto boxes provide another level of authentication for all commands, including SW updates but ideally there is another factor outside of crypto to protect against FSW updates. Multi-factor authorization could be the "two-man rule" where procedures are in place to prevent a successful attack by a single actor (note: development activities that are subsequently subject to review or verification activities may already require collaborating attackers such that a "two-man rule" is not appropriate).
The [organization] shall ensure that the allocated security safeguards operate in a coordinated and mutually reinforcing manner.{SV-MA-6}{CA-7(5),PL-7,PL-8(1),SA-8(19)}
The [organization] shall document and design a security architecture using a defense-in-depth approach that allocates the [organization]s defined safeguards to the indicated locations and layers: [Examples include: operating system abstractions and hardware mechanisms to the separate processors in the platform, internal components, and the FSW].{SV-MA-6}{CA-9,PL-7,PL-8,PL-8(1),SA-8(3),SA-8(4),SA-8(7),SA-8(9),SA-8(11),SA-8(13),SA-8(19),SA-8(29),SA-8(30)}
The [spacecraft] shall use automated mechanisms to maintain and validate baseline configuration to ensure the [spacecraft] is up-to-date, complete, accurate, and readily available.{SV-SP-3}{CM-2(2),CM-3(5),CM-3(7),CM-6,SA-8(8)} This could be command trigger from Ground or elsewhere. The point here is that the self-test is executed onboard the spacecraft via onboard HW/SW self-test mechanisms and its result is reported to the Ground
The [spacecraft] shall prevent the installation of Flight Software without verification that the component has been digitally signed using a certificate that is recognized and approved by the ground.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-9}{CM-3,CM-3(8),CM-5,CM-5(3),CM-14,SA-8(8),SA-8(31),SA-10(2),SI-3,SI-7(12),SI-7(15)}
The [organization] shall ensure that software planned for reuse meets the fit, form, and function, and security as a component within the new application.{SV-SP-6,SV-SP-7,SV-SP-11}{CM-7(5)}
The [organization] shall implement a security architecture and design that provides the required security functionality, allocates security controls among physical and logical components, and integrates individual security functions, mechanisms, and processes together to provide required security capabilities and a unified approach to protection.{SV-MA-6}{PL-7,SA-2,SA-8,SA-8(1),SA-8(2),SA-8(3),SA-8(4),SA-8(5),SA-8(6),SA-8(7),SA-8(9),SA-8(11),SA-8(13),SA-8(19),SA-8(29),SA-8(30),SC-32,SC-32(1)}

Related SPARTA Techniques and Sub-Techniques

ID Name Description
REC-0001 Gather Spacecraft Design Information Threat actors may gather information about the victim spacecraft's design that can be used for future campaigns or to help perpetuate other techniques. Information about the spacecraft can include software, firmware, encryption type, purpose, as well as various makes and models of subsystems.
REC-0001.01 Software Threat actors may gather information about the victim spacecraft's internal software that can be used for future campaigns or to help perpetuate other techniques. Information (e.g. source code, binaries, etc.) about commercial, open-source, or custom developed software may include a variety of details such as types, versions, and memory maps. Leveraging this information threat actors may target vendors of operating systems, flight software, or open-source communities to embed backdoors or for performing reverse engineering research to support offensive cyber operations.
REC-0001.02 Firmware Threat actors may gather information about the victim spacecraft's firmware that can be used for future campaigns or to help perpetuate other techniques. Information about the firmware may include a variety of details such as type and versions on specific devices, which may be used to infer more information (ex. configuration, purpose, age/patch level, etc.). Leveraging this information threat actors may target firmware vendors to embed backdoors or for performing reverse engineering research to support offensive cyber operations.
REC-0001.03 Cryptographic Algorithms Threat actors may gather information about any cryptographic algorithms used on the victim spacecraft's that can be used for future campaigns or to help perpetuate other techniques. Information about the algorithms can include type and private keys. Threat actors may also obtain the authentication scheme (i.e., key/password/counter values) and leverage it to establish communications for commanding the target spacecraft or any of its subsystems. Some spacecraft only require authentication vice authentication and encryption, therefore once obtained, threat actors may use any number of means to command the spacecraft without needing to go through a legitimate channel. The authentication information may be obtained through reconnaissance of the ground system or retrieved from the victim spacecraft.
REC-0001.04 Data Bus Threat actors may gather information about the data bus used within the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information about the data bus can include the make and model which could lead to more information (ex. protocol, purpose, controller, etc.), as well as locations/addresses of major subsystems residing on the bus. Threat actors may also gather information about the bus voltages of the victim spacecraft. This information can include optimal power levels, connectors, range, and transfer rate.
REC-0001.05 Thermal Control System Threat actors may gather information about the thermal control system used with the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information gathered can include type, make/model, and varies analysis programs that monitor it.
REC-0001.06 Maneuver & Control Threat actors may gather information about the station-keeping control systems within the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information gathered can include thruster types, propulsion types, attitude sensors, and data flows associated with the relevant subsystems.
REC-0001.07 Payload Threat actors may gather information about the type(s) of payloads hosted on the victim spacecraft. This information could include specific commands, make and model, and relevant software. Threat actors may also gather information about the location of the payload on the bus and internal routing as it pertains to commands within the payload itself.
REC-0001.08 Power Threat actors may gather information about the power system used within the victim spacecraft. This information can include type, power intake, and internal algorithms. Threat actors may also gather information about the solar panel configurations such as positioning, automated tasks, and layout. Additionally, threat actors may gather information about the batteries used within the victim spacecraft. This information can include the type, quantity, storage capacity, make and model, and location.
REC-0001.09 Fault Management Threat actors may gather information about any fault management that may be present on the victim spacecraft. This information can help threat actors construct specific attacks that may put the spacecraft into a fault condition and potentially a more vulnerable state depending on the fault response.
REC-0002 Gather Spacecraft Descriptors Threat actors may gather information about the victim spacecraft's descriptors that can be used for future campaigns or to help perpetuate other techniques. Information about the descriptors may include a variety of details such as identity attributes, organizational structures, and mission operational parameters.
REC-0002.01 Identifiers Threat actors may gather information about the victim spacecraft's identity attributes that can be used for future campaigns or to help perpetuate other techniques. Information may include a variety of details such as the satellite catalog number, international designator, mission name, and more.
REC-0002.02 Organization Threat actors may gather information about the victim spacecraft's associated organization(s) that can be used for future campaigns or to help perpetuate other techniques. Collection efforts may target the mission owner/operator in order to conduct further attacks against the organization, individual, or other interested parties. Threat actors may also seek information regarding the spacecraft's designer/builder, including physical locations, key employees, and roles and responsibilities as they pertain to the spacecraft, as well as information pertaining to the mission's end users/customers.
REC-0002.03 Operations Threat actors may gather information about the victim spacecraft's operations that can be used for future campaigns or to help perpetuate other techniques. Collection efforts may target mission objectives, orbital parameters such as orbit slot and inclination, user guides and schedules, etc. Additionally, threat actors may seek information about constellation deployments and configurations where applicable.
REC-0003 Gather Spacecraft Communications Information Threat actors may obtain information on the victim spacecraft's communication channels in order to determine specific commands, protocols, and types. Information gathered can include commanding patterns, antenna shape and location, beacon frequency and polarization, and various transponder information.
REC-0003.01 Communications Equipment Threat actors may gather information regarding the communications equipment and its configuration that will be used for communicating with the victim spacecraft. This includes: Antenna Shape: This information can help determine the range in which it can communicate, the power of it's transmission, and the receiving patterns. Antenna Configuration/Location: This information can include positioning, transmission frequency, wavelength, and timing. Telemetry Signal Type: Information can include timing, radio frequency wavelengths, and other information that can provide insight into the spacecraft's telemetry system. Beacon Frequency: This information can provide insight into where the spacecrafts located, what it's orbit is, and how long it can take to communicate with a ground station. Beacon Polarization: This information can help triangulate the spacecrafts it orbits the earth and determine how a satellite must be oriented in order to communicate with the victim spacecraft. Transponder: This could include the number of transponders per band, transponder translation factor, transponder mappings, power utilization, and/or saturation point.
REC-0003.02 Commanding Details Threat actors may gather information regarding the commanding approach that will be used for communicating with the victim spacecraft. This includes: Commanding Signal Type: This can include timing, radio frequency wavelengths, and other information that can provide insight into the spacecraft's commanding system. Valid Commanding Patterns: Most commonly, this comes in the form of a command database, but can also include other means that provide information on valid commands and the communication protocols used by the victim spacecraft. Valid Commanding Periods: This information can provide insight into when a command will be accepted by the spacecraft and help the threat actor construct a viable attack campaign.
REC-0003.03 Mission-Specific Channel Scanning Threat actors may seek knowledge about mission-specific communication channels dedicated to a payload. Such channels could be managed by a different organization than the owner of the spacecraft itself.
REC-0003.04 Valid Credentials Threat actors may seek out valid credentials which can be utilized to facilitate several tactics throughout an attack. Credentials may include, but are not limited to: system service accounts, user accounts, maintenance accounts, cryptographic keys and other authentication mechanisms.
REC-0004 Gather Launch Information Threat actors may gather the launch date and time, location of the launch (country & specific site), organizations involved, launch vehicle, etc. This information can provide insight into protocols, regulations, and provide further targets for the threat actor, including specific vulnerabilities with the launch vehicle itself.
REC-0004.01 Flight Termination Threat actor may obtain information regarding the vehicle's flight termination system. Threat actors may use this information to perform later attacks and target the vehicle's termination system to have desired impact on mission.
REC-0005 Eavesdropping Threat actors may seek to capture network communications throughout the ground station and radio frequency (RF) communication used for uplink and downlink communications. RF communication frequencies vary between 30MHz and 60 GHz. Threat actors may capture RF communications using specialized hardware, such as software defined radio (SDR), handheld radio, or a computer with radio demodulator turned to the communication frequency. Network communications may be captured using packet capture software while the threat actor is on the target network.
REC-0005.01 Uplink Intercept Threat actors may capture the RF communications as it pertains to the uplink to the victim spacecraft. This information can contain commanding information that the threat actor can use to perform other attacks against the victim spacecraft.
REC-0005.02 Downlink Intercept Threat actors may capture the RF communications as it pertains to the downlink of the victim spacecraft. This information can contain important telemetry such as onboard status and mission data.
REC-0005.03 Proximity Operations Threat actors may capture signals and/or network communications as they travel on-board the vehicle (i.e., EMSEC/TEMPEST), via RF, or terrestrial networks. This information can be decoded to determine commanding and telemetry protocols, command times, and other information that could be used for future attacks.
REC-0005.04 Active Scanning (RF/Optical) Threat actors may interfere with the link by actively transmitting packets to activate the transmitter and induce a reply. The scan can be similar to a brute force attack, aiming to guess the used frequencies and protocols to obtain a reply.
REC-0006 Gather FSW Development Information Threat actors may obtain information regarding the flight software (FSW) development environment for the victim spacecraft. This information may include the development environment, source code, compiled binaries, testing tools, and fault management.
REC-0006.01 Development Environment Threat actors may gather information regarding the development environment for the victim spacecraft's FSW. This information can include IDEs, configurations, source code, environment variables, source code repositories, code "secrets", and compiled binaries.
REC-0006.02 Security Testing Tools Threat actors may gather information regarding how a victim spacecraft is tested in regards to the FSW. Understanding the testing approach including tools could identify gaps and vulnerabilities that could be discovered and exploited by a threat actor.
REC-0007 Monitor for Safe-Mode Indicators Threat actors may gather information regarding safe-mode indicators on the victim spacecraft. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
REC-0008 Gather Supply Chain Information Threat actors may gather information about a mission's supply chain or product delivery mechanisms that can be used for future campaigns or to help perpetuate other techniques.
REC-0008.01 Hardware Threat actors may gather information that can be used to facilitate a future attack where they manipulate hardware components in the victim spacecraft prior to the customer receiving them in order to achieve data or system compromise. The threat actor can insert backdoors and give them a high level of control over the system when they modify the hardware or firmware in the supply chain. This would include ASIC and FPGA devices as well.
REC-0008.02 Software Threat actors may gather information relating to the mission's software supply chain in order to facilitate future attacks to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one.
REC-0008.03 Known Vulnerabilities Threat actors may gather information about vulnerabilities that can be used for future campaigns or to perpetuate other techniques. A vulnerability is a weakness in the victim spacecraft's hardware, subsystems, bus, or software that can, potentially, be exploited by a threat actor to cause unintended or unanticipated behavior to occur. During reconnaissance as threat actors identify the types/versions of software (i.e., COTS, open-source) being used, they will look for well-known vulnerabilities that could affect the space vehicle. Threat actors may find vulnerability information by searching leaked documents, vulnerability databases/scanners, compromising ground systems, and searching through online databases.
REC-0008.04 Business Relationships Adversaries may gather information about the victim's business relationships that can be used during targeting. Information about an mission’s business relationships may include a variety of details, including second or third-party organizations/domains (ex: managed service providers, contractors/sub-contractors, etc.) that have connected (and potentially elevated) network access or sensitive information. This information may also reveal supply chains and shipment paths for the victim’s hardware and software resources.
REC-0009 Gather Mission Information Threat actors may initially seek to gain an understanding of a target mission by gathering information commonly captured in a Concept of Operations (or similar) document and related artifacts. Information of interest includes, but is not limited to: - the needs, goals, and objectives of the system - system overview and key elements/instruments - modes of operations (including operational constraints) - proposed capabilities and the underlying science/technology used to provide capabilities (i.e., scientific papers, research studies, etc.) - physical and support environments
RD-0002 Compromise Infrastructure