The [organization] shall have an Insider Threat Program to aid in the detection and prevention of people with authorized access to perform malicious activities.{AT-2(2),IR-4(6),IR-4(7),PM-12,PM-16}
|
|
The [organization] includes security awareness training on recognizing and reporting potential indicators of insider threat.{AT-2(2),IR-4(6),IR-6,IR-6(2),PM-16}
|
|
The [organization] shall perform penetration testing/analysis: (1) On potential system elements before accepting the system; (2) As a realistic simulation of the active adversary’s known adversary tactics, techniques, procedures (TTPs), and tools; and (3) Throughout the lifecycle on physical and logical systems, elements, and processes.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CA-8(1),SA-9,SA-11(5),SR-5(2)}
|
Penetration testing should be performed throughout the lifecycle on physical and logical systems, elements, and processes including: (1) Hardware, software, and firmware development processes; (2) Shipping/handling procedures; (3) Personnel and physical security programs; (4) Configuration management tools/measures to maintain provenance; and (5) Any other programs, processes, or procedures associated with the production/distribution of supply chain elements.
|
The [organization] shall maintain a list of suppliers and potential suppliers used, and the products that they supply to include software.{SV-SP-3,SV-SP-4,SV-SP-11}{CM-10,PL-8(2),PM-30,SA-8(9),SA-8(11)}
|
Ideally you have diversification with suppliers
|
The [organization] shall develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including support tamper resistance and provide a level of protection against the introduction of malicious code or hardware.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CM-3(8),CM-7(9),PM-30,SA-8(9),SA-8(11),SA-9,SA-10(3),SA-19,SC-51,SR-4(3),SR-4(4),SR-5(2),SR-11}
|
|
The [organization] shall conduct a criticality analysis to identify mission critical functions and critical components and reduce the vulnerability of such functions and components through secure system design.{SV-SP-3,SV-SP-4,SV-AV-7,SV-MA-4}{CP-2,CP-2(8),PL-7,PM-11,PM-30(1),RA-3(1),RA-9,SA-8(9),SA-8(11),SA-8(25),SA-12,SA-14,SA-15(3),SC-7(29),SR-1}
|
During SCRM, criticality analysis will aid in determining supply chain risk. For mission critical functions/components, extra scrutiny must be applied to ensure supply chain is secured.
|
The [organization] shall report counterfeit information system components to [organization] officials. {SV-SP-4}{IR-6,IR-6(2),PM-30,SA-19,SR-11}
|
|
The [organization] shall use all-source intelligence analysis of suppliers and potential suppliers of the information system, system components, or system services to inform engineering, acquisition, and risk management decisions.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{PM-16,PM-30,RA-2,RA-3(1),RA-3(2),RA-7,SA-9,SA-12(8),SR-5(2)}
|
* The Program should also consider sub suppliers and potential sub suppliers.
* All-source intelligence of suppliers that the organization may use includes: (1) Defense Intelligence Agency (DIA) Threat Assessment Center (TAC), the enterprise focal point for supplier threat assessments for the DOD acquisition community risks; (2) Other U.S. Government resources including: (a) Government Industry Data Exchange Program (GIDEP) – Database where government and industry can record issues with suppliers, including counterfeits; and (b) System for Award Management (SAM) – Database of companies that are barred from doing business with the US Government.
|
The [organization] shall request threat analysis of suppliers of critical components and manage access to and control of threat analysis products containing U.S.person information.{SV-SP-3,SV-SP-4,SV-SP-11}{PM-16,PM-30(1),RA-3(1),SA-9,SA-12,SR-1}
|
The intent of this requirement is to address supply chain concerns on hardware and software vendors. Not required for trusted suppliers accredited to the Defense Microelectronic Activity (DMEA). If the Program intends to use a supplier not accredited by DMEA, the government customer should be notified as soon as possible. If the Program has internal processes to vet suppliers, it may meet this requirement. All software used and its origins must be included in the SBOM and be subjected to internal and Government vulnerability scans.
|
The [organization] shall use all-source intelligence analysis on threats to mission critical capabilities and/or system components to inform risk management decisions.{SV-MA-4}{PM-16,RA-3(2),RA-3(3),RA-7,RA-9,SA-12(8),SA-15(8)}
|
|
The [organization] shall maintain documentation tracing the strategies, tools, and methods implemented to mitigate supply chain risk .{SV-SP-3,SV-SP-4,SV-AV-7}{PM-30,RA-3(1),SA-12(1),SR-5}
|
Examples include: (1) Transferring a portion of the risk to the developer or supplier through the use of contract language and incentives; (2) Using contract language that requires the implementation of SCRM throughout the system lifecycle in applicable contracts and other acquisition and assistance instruments (grants, cooperative agreements, Cooperative Research and Development Agreements (CRADAs), and other transactions). Within the DOD some examples include: (a) Language outlined in the Defense Acquisition Guidebook section 13.13. Contracting; (b) Language requiring the use of protected mechanisms to deliver elements and data about elements, processes, and delivery mechanisms; (c) Language that articulates that requirements flow down supply chain tiers to sub-prime suppliers. (3) Incentives for suppliers that: (a) Implement required security safeguards and SCRM best practices; (b) Promote transparency into their organizational processes and security practices; (c) Provide additional vetting of the processes and security practices of subordinate suppliers, critical information system components, and services; and (d) Implement contract to reduce SC risk down the contract stack. (4) Gaining insight into supplier security practices; (5) Using contract language and incentives to enable more robust risk management later in the lifecycle; (6) Using a centralized intermediary or “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary;
|
The [organization] shall protect against supply chain threats to the system, system components, or system services by employing security safeguards as defined by NIST SP 800-161 Rev.1.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{PM-30,RA-3(1),SA-8(9),SA-8(11),SA-12,SI-3,SR-1}
|
The chosen supply chain safeguards should demonstrably support a comprehensive, defense-in-breadth information security strategy. Safeguards should include protections for both hardware and software. Program should define their critical components (HW & SW) and identify the supply chain protections, approach/posture/process.
|
The [organization] shall use the threat and vulnerability analyses of the as-built system, system components, or system services to inform and direct subsequent testing/evaluation of the as-built system, component, or service.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-3(3),SA-11(2),SA-15(8),SI-3}
|
|
The [organization] shall develop and implement anti-counterfeit policy and procedures, in coordination with the [CIO], that is demonstrably consistent with the anti-counterfeit policy defined by the Program office.{SV-SP-4,SV-SP-11}{SR-11}
|
|
The [organization] shall employ [organization]-defined techniques to limit harm from potential adversaries identifying and targeting the Program supply chain.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-3(2),SC-38}
|
Examples of security safeguards that the organization should consider implementing to limit the harm from potential adversaries targeting the organizational supply chain, are: (1) Using trusted physical delivery mechanisms that do not permit access to the element during delivery (ship via a protected carrier, use cleared/official couriers, or a diplomatic pouch); (2) Using trusted electronic delivery of products and services (require downloading from approved, verification-enhanced sites); (3) Avoiding the purchase of custom configurations, where feasible; (4) Using procurement carve outs (i.e., exclusions to commitments or obligations), where feasible; (5) Using defensive design approaches; (6) Employing system OPSEC principles; (7) Employing a diverse set of suppliers; (8) Employing approved vendor lists with standing reputations in industry; (9) Using a centralized intermediary and “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary Employing inventory management policies and processes; (10) Using flexible agreements during each acquisition and procurement phase so that it is possible to meet emerging needs or requirements to address supply chain risk without requiring complete revision or re-competition of an acquisition or procurement; (11) Using international, national, commercial or government standards to increase potential supply base; (12) Limiting the disclosure of information that can become publicly available; and (13) Minimizing the time between purchase decisions and required delivery.
|
The [organization] shall employ the [organization]-defined approaches for the purchase of the system, system components, or system services from suppliers.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-5}
|
This could include tailored acquisition strategies, contract tools, and procurement methods.
|
The [organization] (and Prime Contractor) shall conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-6}
|
|
The [organization] shall employ [Selection (one or more): independent third-party analysis, Program penetration testing, independent third-party penetration testing] of [Program-defined supply chain elements, processes, and actors] associated with the system, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-6(1)}
|
|
The [organization] shall employ [Program-defined Operations Security (OPSEC) safeguards] to protect supply chain-related information for the system, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-7,SC-38,CP-2(8)}
|
OPSEC safeguards may include: (1) Limiting the disclosure of information needed to design, develop, test, produce, deliver, and support the element for example, supplier identities, supplier processes, potential suppliers, security requirements, design specifications, testing and evaluation result, and system/component configurations, including the use of direct shipping, blind buys, etc.; (2) Extending supply chain awareness, education, and training for suppliers, intermediate users, and end users; (3) Extending the range of OPSEC tactics, techniques, and procedures to potential suppliers, contracted suppliers, or sub-prime contractor tier of suppliers; and (4) Using centralized support and maintenance services to minimize direct interactions between end users and original suppliers.
|
The [spacecraft] shall monitor security relevant telemetry points for malicious commanding attempts.{AC-17,AC-17(1),AC-17(10),AU-3(1),RA-10,SC-7,SC-16,SC-16(2),SC-16(3),SI-3(8),SI-4,SI-4(1),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
|
|
The [spacecraft] shall monitor and collect all onboard cyber-relevant data (from multiple system components), including identification of potential attacks and sufficient information about the attack for subsequent analysis.{SV-DCO-1}{AC-6(9),AC-20,AC-20(1),AU-2,AU-12,IR-4,IR-4(1),RA-10,SI-3,SI-3(10),SI-4,SI-4(1),SI-4(2),SI-4(7),SI-4(24)}
|
The spacecraft will monitor and collect data that provides accountability of activity occurring onboard the spacecraft. Due to resource limitations on the spacecraft, analysis must be performed to determine which data is critical for retention and which can be filtered. Full system coverage of data and actions is desired as an objective; it will likely be impractical due to the resource limitations. “Cyber-relevant data” refers to all data and actions deemed necessary to support accountability and awareness of onboard cyber activities for the mission. This would include data that may indicate abnormal activities, critical configuration parameters, transmissions on onboard networks, command logging, or other such data items. This set of data items should be identified early in the system requirements and design phase. Cyber-relevant data should support the ability to assess whether abnormal events are unintended anomalies or actual cyber threats. Actual cyber threats may rarely or never occur, but non-threat anomalies occur regularly. The ability to filter out cyber threats for non-cyber threats in relevant time would provide a needed capability. Examples could include successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels).
|
The [spacecraft] shall generate cyber-relevant audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, and the outcome of the event.{SV-DCO-1}{AU-3,AU-3(1),AU-12,IR-4,IR-4(1),RA-10,SI-3,SI-3(10),SI-4(7),SI-4(24)}
|
|
The [spacecraft] shall attribute cyber attacks and identify unauthorized use of the platform by downlinking onboard cyber information to the mission ground station within 3 minutes. {AU-4(1),IR-4,IR-4(1),IR-4(12),IR-4(13),RA-10,SA-8(22),SI-3,SI-3(10),SI-4(5),SI-4(7),SI-4(12),SI-4(24)}
|
|
The [spacecraft] shall provide automated onboard mechanisms that integrate audit review, analysis, and reporting processes to support mission processes for investigation and response to suspicious activities to determine the attack class in the event of a cyber attack.{SV-DCO-1}{AU-6(1),IR-4,IR-4(1),IR-4(12),IR-4(13),PM-16(1),RA-10,SA-8(21),SA-8(22),SC-5(3),SI-3,SI-3(10),SI-4(7),SI-4(24),SI-7(7)}
|
* Identifying the class (e.g., exfiltration, Trojans, etc.), nature, or effect of cyberattack (e.g., exfiltration, subverted control, or mission interruption) is necessary to determine the type of response. The first order of identification may be to determine whether the event is an attack or a non-threat event (anomaly). The objective requirement would be to predict the impact of the detected signature.
* Unexpected conditions can include RF lockups, loss of lock, failure to acquire an expected contact and unexpected reports of acquisition, unusual AGC and ACS control excursions, unforeseen actuator enabling's or actions, thermal stresses, power aberrations, failure to authenticate, software or counter resets, etc. Mitigation might include additional TMONs, more detailed AGC and PLL thresholds to alert operators, auto-capturing state snapshot images in memory when unexpected conditions occur, signal spectra measurements, and expanded default diagnostic telemetry modes to help in identifying and resolving anomalous conditions.
|
The [spacecraft] shall integrate cyber related detection and responses with existing fault management capabilities to ensure tight integration between traditional fault management and cyber intrusion detection and prevention.{SV-DCO-1}{AU-6(4),IR-4,IR-4(1),RA-10,SA-8(21),SA-8(26),SC-3(4),SI-3,SI-3(10),SI-4(7),SI-4(13),SI-4(16),SI-4(24),SI-4(25),SI-7(7),SI-13}
|
The onboard IPS system should be integrated into the existing onboard spacecraft fault management system (FMS) because the FMS has its own fault detection and response system built in. SV corrective behavior is usually limited to automated fault responses and ground commanded recovery actions. Intrusion prevention and response methods will inform resilient cybersecurity design. These methods enable detected threat activity to trigger defensive responses and resilient SV recovery.
|
The [spacecraft] shall protect information obtained from logging/intrusion-monitoring from unauthorized access, modification, and deletion.{SV-DCO-1}{AU-9,AU-9(3),RA-10,SI-4(7),SI-4(24)}
|
|
The [spacecraft] shall implement cryptographic mechanisms to protect the integrity of audit information and audit tools.{SV-DCO-1}{AU-9(3),RA-10,SC-8(1),SI-3,SI-3(10),SI-4(24)}
|
|
The [spacecraft] shall enter a cyber-safe mode when conditions that threaten the platform are detected, enters a cyber-safe mode of operation with restrictions as defined based on the cyber-safe mode.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4,IR-4(1),IR-4(3),PE-10,RA-10,SA-8(16),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-13,SI-17}
|
|
The [spacecraft] shall be able to locate the onboard origin of a cyber attack and alert ground operators within 3 minutes.{SV-DCO-1}{IR-4,IR-4(1),IR-4(12),IR-4(13),RA-10,SA-8(22),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(16),SI-4(24)}
|
The origin of any attack onboard the vehicle should be identifiable to support mitigation. At the very least, attacks from critical element (safety-critical or higher-attack surface) components should be locatable quickly so that timely action can occur.
|
The [spacecraft] shall detect and deny unauthorized outgoing communications posing a threat to the spacecraft.{SV-DCO-1}{IR-4,IR-4(1),RA-5(4),RA-10,SC-7(9),SC-7(10),SI-4,SI-4(1),SI-4(4),SI-4(7),SI-4(11),SI-4(13),SI-4(24),SI-4(25)}
|
|
The [spacecraft] shall select and execute safe countermeasures against cyber attacks prior to entering cyber-safe mode.{SV-DCO-1}{IR-4,RA-10,SA-8(21),SA-8(24),SI-4(7),SI-17}
|
These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker exquisitely—with or without ground aiding. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system." These countermeasures are likely executed prior to entering into a cyber-safe mode.
|
The [spacecraft] shall provide cyber threat status to the ground segment for the Defensive Cyber Operations team, per the governing specification.{SV-DCO-1}{IR-5,PM-16,PM-16(1),RA-3(3),RA-10,SI-4,SI-4(1),SI-4(24),SI-7(7)}
|
The future space enterprises will include full-time Cyber Defense teams supporting space mission systems. Their work is currently focused on the ground segment but may eventually require specific data from the space segment for their successful operation. This requirement is a placeholder to ensure that any DCO-related requirements are taken into consideration for this document.
|
The [spacecraft] shall be designed and configured so that encrypted communications traffic and data is visible to on-board security monitoring tools.{SV-DCO-1}{RA-10,SA-8(21),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(10),SI-4(13),SI-4(24),SI-4(25)}
|
|
The [spacecraft] shall be designed and configured so that spacecraft memory can be monitored by the on-board intrusion detection/prevention capability.{SV-DCO-1}{RA-10,SA-8(21),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(24),SI-16}
|
|
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
|
The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management.
|