The [organization] shall produce a plan for the continuous monitoring of security control effectiveness.{SA-4(8),CP-4(5),PM-31}
|
|
The [organization] shall coordinate penetration testing on mission critical spacecraft components (hardware and/or software).{SV-MA-4}{CA-8,CA-8(1),CP-4(5)}
|
Not all defects (i.e., buffer overflows, race conditions, and memory leaks) can be discovered statically and require execution of the system. This is where space-centric cyber testbeds (i.e., cyber ranges) are imperative as they provide an environment to maliciously attack components in a controlled environment to discover these undesirable conditions. Technology has improved to where digital twins for spacecraft are achievable, which provides an avenue for cyber testing that was often not performed due to perceived risk to the flight hardware.
|
The [organization] shall establish robust procedures and technical methods to perform testing to include adversarial testing (i.e.abuse cases) of the platform hardware and software.{CA-8,CP-4(5),RA-5,RA-5(1),RA-5(2),SA-3,SA-4(3),SA-11,SA-11(1),SA-11(2),SA-11(5),SA-11(7),SA-11(8),SA-15(7)}
|
|
The [organization] defines the security safeguards to be employed to protect the availability of system resources.{CP-2(2),SC-6,SI-13,SI-17}
|
|
The [spacecraft] shall monitor security relevant telemetry points for malicious commanding attempts.{AC-17,AC-17(1),AC-17(10),AU-3(1),RA-10,SC-7,SC-16,SC-16(2),SC-16(3),SI-3(8),SI-4,SI-4(1),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
|
|
The [spacecraft] shall provide the capability to restrict command lock based on geographic location of ground stations.{SV-AC-1}{AC-2(11),IA-10,SI-4(13),SI-4(25)}
|
This could be performed using command lockout based upon when the spacecraft is over selected regions. This should be configurable so that when conflicts arise, the Program can update. The goal is so the spacecraft won't accept a command when the spacecraft determines it is in a certain region.
|
The [spacecraft] shall implement cryptographic mechanisms to identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters.{SV-AV-1,SV-IT-1}{AC-3,AC-20,SA-8(19),SC-8(1),SC-23(3),SC-40(3),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
|
|
The [spacecraft] shall provide non-identical methods, or functionally independent methods, for commanding a mission critical function when the software is the sole control of that function.{AC-3(2),SI-3(8),SI-13}
|
|
The [spacecraft] shall implement boundary protections to separate bus, communications, and payload components supporting their respective functions.{SV-AC-6}{AC-3(3),AC-3(4),CA-9,SA-8(3),SA-8(14),SA-8(18),SA-8(19),SA-17(7),SC-2,SC-2(2),SC-7(13),SC-7(21),SC-7(29),SC-16(3),SC-32,SI-3,SI-4(13),SI-4(25)}
|
|
The [spacecraft] shall integrate cyber related detection and responses with existing fault management capabilities to ensure tight integration between traditional fault management and cyber intrusion detection and prevention.{SV-DCO-1}{AU-6(4),IR-4,IR-4(1),RA-10,SA-8(21),SA-8(26),SC-3(4),SI-3,SI-3(10),SI-4(7),SI-4(13),SI-4(16),SI-4(24),SI-4(25),SI-7(7),SI-13}
|
The onboard IPS system should be integrated into the existing onboard spacecraft fault management system (FMS) because the FMS has its own fault detection and response system built in. SV corrective behavior is usually limited to automated fault responses and ground commanded recovery actions. Intrusion prevention and response methods will inform resilient cybersecurity design. These methods enable detected threat activity to trigger defensive responses and resilient SV recovery.
|
The [spacecraft] shall have fault-tolerant authoritative time sourcing for the platform's clock.{SV-IT-1}{AU-8(2),SC-45,SC-45(1),SC-45(2),SI-13}
|
* Adopt voting schemes (triple modular redundancy) that include inputs from backup sources. Consider providing a second reference frame against which short-term changes or interferences can be compared.
* Atomic clocks, crystal oscillators and/or GPS receivers are often used as time sources. GPS should not be used as the only source due to spoofing/jamming concerns.
|
All [spacecraft] commands which have unrecoverable consequence must have dual authentication prior to command execution.{AU-9(5),IA-3,IA-4,IA-10,PE-3,PM-12,SA-8(15),SA-8(21),SC-16(2),SC-16(3),SI-3(8),SI-3(9),SI-4(13),SI-4(25),SI-7(12),SI-10(6),SI-13}
|
|
The [spacecraft] shall have a method to ensure the integrity of these commands and validate their authenticity before execution.{AU-9(5),IA-3,IA-4,IA-10,PE-3,PM-12,SA-8(15),SA-8(21),SC-16(2),SC-16(3),SI-3(8),SI-3(9),SI-4(13),SI-4(25),SI-7(12),SI-10(6),SI-13}
|
|
The [spacecraft] shall enter a cyber-safe mode when conditions that threaten the platform are detected, enters a cyber-safe mode of operation with restrictions as defined based on the cyber-safe mode.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4,IR-4(1),IR-4(3),PE-10,RA-10,SA-8(16),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-13,SI-17}
|
|
The [spacecraft] shall provide the capability to enter the platform into a known good, operational cyber-safe mode from a tamper-resistant, configuration-controlled (“gold”) image that is authenticated as coming from an acceptable supplier, and has its integrity verified.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4(3),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-13,SI-17}
|
Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and SW functions to preattack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on available equipment still available after a cyberattack. The goal is for the vehicle to resume full mission operations. If not possible, a reduced level of mission capability should be achieved.
|
The [spacecraft] shall fail to a known secure state for failures during initialization, and aborts preserving information necessary to return to operations in failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(24),SC-24,SI-13,SI-17}
|
|
The [spacecraft] shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution).{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2}{CP-13,SA-8(19),SA-8(24),SC-7(18),SI-13,SI-13(4)}
|
|
The [spacecraft] shall detect and deny unauthorized outgoing communications posing a threat to the spacecraft.{SV-DCO-1}{IR-4,IR-4(1),RA-5(4),RA-10,SC-7(9),SC-7(10),SI-4,SI-4(1),SI-4(4),SI-4(7),SI-4(11),SI-4(13),SI-4(24),SI-4(25)}
|
|
The [spacecraft] shall recover to a known cyber-safe state when an anomaly is detected.{IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-10(6),SI-13,SI-17}
|
|
The [spacecraft] shall detect and recover from detected memory errors or transitions to a known cyber-safe state.{IR-4,IR-4(1),SA-8(16),SA-8(24),SI-3,SI-4(7),SI-10(6),SI-13,SI-17}
|
|
The [spacecraft] shall operate securely in off-nominal power conditions, including loss of power and spurious power transients.{PE-11,PE-11(1),SA-8(16),SA-8(19),SI-13,SI-17}
|
|
The [spacecraft] shall be designed and configured so that encrypted communications traffic and data is visible to on-board security monitoring tools.{SV-DCO-1}{RA-10,SA-8(21),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(10),SI-4(13),SI-4(24),SI-4(25)}
|
|
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
|
The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management.
|
The [spacecraft] shall identify and reject commands received out-of-sequence when the out-of-sequence commands can cause a hazard/failure or degrade the control of a hazard or mission.{SC-16(2),SI-4(13),SI-4(25),SI-10,SI-10(6),SI-13}
|
|
The [spacecraft] shall provide independent mission/cyber critical threads such that any one credible event will not corrupt another mission/cyber critical thread.{SC-3,SC-32,SC-32(1),SI-3,SI-13}
|
|
The [spacecraft] shall perform prerequisite checks for the execution of hazardous commands.{SI-10,SI-10(6),SI-13}
|
|
The [spacecraft] shall validate a functionally independent parameter prior to the issuance of any sequence that could remove an inhibit, or perform a hazardous action.{SI-10(3),SI-10(6),SI-13}
|
|
The [spacecraft] shall have failure tolerance on sensors used by software to make mission-critical decisions.{SV-MA-3,SV-AV-7}{SI-13,SI-17}
|
|