Alternate Communications Paths

Establish alternate communications paths to reduce the risk of all communications paths being affected by the same incident.

Best Segment for Countermeasure Deployment

  • Ground Segment

NIST Rev5 Controls

D3FEND

ISO 27001

ID: CM0070
D3FEND Artifacts: 
Created: 2022/10/19
Last Modified: 2022/12/08

Techniques Addressed by Countermeasure

here here here here here here here here here
ID Name Description
IA-0007 Compromise Ground System Threat actors may initially compromise the ground system in order to access the target spacecraft. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes. Threat actors may also perform further reconnaissance within the system to enumerate mission networks and gather information related to ground station logical topology, missions ran out of said ground station, birds that are in-band of targeted ground stations, and other mission system capabilities.
.02 Malicious Commanding via Valid GS Threat actors may compromise target owned ground systems components (e.g., front end processors, command and control software, etc.) that can be used for future campaigns or to perpetuate other techniques. These ground systems components have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
EX-0013 Flooding Threat actors use jamming and flooding attacks to disrupt communications by injecting unexpected noise or messages into a transmission channel. There are several types of attacks that are consistent with this method of exploitation, and they can produce various outcomes. Although, the most prominent of the impacts are denial of service or data corruption. Several elements of the space vehicle may be targeted by jamming and flooding attacks, and depending on the time of the attack, it can have devastating results to the availability of the system.
.01 Valid Commands Threat actors may utilize valid commanding as a mechanism for flooding as the processing of these valid commands could expend valuable resources like processing power and battery usage. Flooding the spacecraft bus, sub-systems or link layer with valid commands can create temporary denial of service conditions for the space vehicle while the spacecraft is consumed with processing these valid commands.
.02 Erroneous Input Threat actors inject noise/data/signals into the target channel so that legitimate messages cannot be correctly processed due to impacts to integrity or availability. Additionally, while this technique does not utilize system-relevant signals/commands/information, the target spacecraft may still consume valuable computing resources to process and discard the signal.
.03 Position, Navigation, and Timing (PNT) Threat actors may attempt to jam/flood Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to inhibit a spacecraft's position, navigation, and/or timing functions.
DE-0002 Prevent Downlink Threat actors may target the downlink connections to prevent the victim spacecraft from sending telemetry to the ground controllers. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
.01 Inhibit Ground System Functionality Threat actors may utilize ground-system presence to inhibit the ground system software's ability to process (or display) telemetry, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
.02 Jam Link Signal Threat actors may overwhelm/jam the downlink signal to prevent transmitted telemetry signals from reaching their destination without severe modification/interference, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
.03 Inhibit Spacecraft Functionality Threat actors may manipulate or shut down a target spacecraft's on-board processes to inhibit the spacecraft's ability to generate or transmit telemetry signals, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.

Space Threats Addressed by Countermeasure

ID Description
SV-AV-5 Using fault management system against you. Understanding the fault response could be leveraged to get satellite in vulnerable state. Example, safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of TLM to cause action from ground, or some sort of RPO to cause S/C to go into safe mode;  
SV-AC-1 Attempting access to an access-controlled system resulting in unauthorized access  
SV-AV-1 Communications system jamming resulting in denial of service and loss of availability and data integrity  
SV-MA-7 Exploit ground system and use to maliciously to interact with the spacecraft  

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The [organization] shall identify and properly classify mission sensitive design/operations information and access control shall be applied in accordance with classification guides and applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{SV-CF-3,SV-AV-5}{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-8(19),SC-8(1),SC-28(3),SI-12} * Mission sensitive information should be classified as Controlled Unclassified Information (CUI) or formally known as Sensitive but Unclassified. Ideally these artifacts would be rated SECRET or higher and stored on classified networks. Mission sensitive information can typically include a wide range of candidate material: the functional and performance specifications, the RF ICDs, databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, SBU, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission.
The [organization] shall distribute documentation to only personnel with defined roles and a need to know.{SV-CF-3,SV-AV-5}{CM-12,CP-2,SA-5,SA-10} Least privilege and need to know should be employed with the protection of all documentation. Documentation can contain sensitive information that can aid in vulnerability discovery, detection, and exploitation. For example, command dictionaries for ground and space systems should be handles with extreme care. Additionally, design documents for missions contain many key elements that if compromised could aid in an attacker successfully exploiting the system.
The [organization] shall define policy and procedures to ensure that the developed or delivered systems do not embed unencrypted static authenticators in applications, access scripts, configuration files, nor store unencrypted static authenticators on function keys.{SV-AC-1,SV-AC-3}{IA-5(7)}
The [organization] shall protect documentation and Essential Elements of Information (EEI) as required, in accordance with the risk management strategy.{SV-CF-3,SV-AV-5}{SA-5} Essential Elements of Information (EEI):
The [organization] should have requirements/controls for all ground/terrestrial systems covering: Data Protection, Ground Software, Endpoints, Networks, Computer Network Defense / Incident Response, Perimeter Security, Physical Controls, and Prevention Program (SSP, PPP, and Training).See NIST 800-53 and CNSSI 1253 for guidance on ground security {SV-MA-7}
The [spacecraft] shall terminate the connection associated with a communications session at the end of the session or after 3 minutes of inactivity.{SV-AC-1}{AC-12,SA-8(18),SC-10,SC-23(1),SC-23(3),SI-14,SI-14(3)}
The [spacecraft] shall protect authenticator content from unauthorized disclosure and modification.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),IA-5,IA-5(6),RA-5(4),SA-8(18),SA-8(19),SC-28(3)}
The [spacecraft] encryption key handling shall be handled outside of the onboard software and protected using cryptography.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(1),SC-28(3)}
The [spacecraft] encryption keys shall be restricted so that the onboard software is not able to access the information for key readout.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
The [spacecraft] encryption keys shall be restricted so that they cannot be read via any telecommands.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
The [spacecraft] shall produce, control, and distribute symmetric cryptographic keys using NSA Certified or Approved key management technology and processes per CNSSP 12.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-9(6),SC-12,SC-12(1),SC-12(2),SC-12(3)}
The [spacecraft] shall use [directional or beamforming] antennas in normal ops to reduce the likelihood that unintended receivers will be able to intercept signals.{SV-AV-1}{AC-18(5)}
The [spacecraft] shall provide the capability to restrict command lock based on geographic location of ground stations.{SV-AC-1}{AC-2(11),IA-10,SI-4(13),SI-4(25)} This could be performed using command lockout based upon when the spacecraft is over selected regions. This should be configurable so that when conflicts arise, the Program can update. The goal is so the spacecraft won't accept a command when the spacecraft determines it is in a certain region.
The [spacecraft] shall restrict the use of information inputs to spacecraft and designated ground stations as defined in the applicable ICDs.{SV-AC-1,SV-AC-2}{AC-20,SC-23,SI-10,SI-10(5),SI-10(6)}
The [spacecraft] shall uniquely identify and authenticate the ground station and other spacecraft before establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(10),AC-20,IA-3,IA-4,SA-8(18),SI-3(9)}
The [spacecraft] shall authenticate the ground station (and all commands) and other spacecraft before establishing remote connections using bidirectional authentication that is cryptographically based.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(2),AC-17(10),AC-18(1),AC-20,IA-3(1),IA-4,IA-4(9),IA-7,IA-9,SA-8(18),SA-8(19),SA-9(2),SC-7(11),SC-16(1),SC-16(2),SC-16(3),SC-23(3),SI-3(9)} Authorization can include embedding opcodes in command strings, using trusted authentication protocols, identifying proper link characteristics such as emitter location, expected range of receive power, expected modulation, data rates, communication protocols, beamwidth, etc.; and tracking command counter increments against expected values.
The [spacecraft] shall implement cryptographic mechanisms to identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters.{SV-AV-1,SV-IT-1}{AC-3,AC-20,SA-8(19),SC-8(1),SC-23(3),SC-40(3),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
The [spacecraft] shall implement relay and replay-resistant authentication mechanisms for establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,IA-2(8),IA-2(9),SA-8(18),SC-8(1),SC-16(1),SC-16(2),SC-23(3),SC-40(4)}
The [spacecraft] shall not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode).{SV-AC-1,SV-CF-1,SV-CF-2}{AC-3(10),SA-8(18),SA-8(19),SC-16(2),SC-16(3),SC-40(4)}
The [spacecraft] shall enter a cyber-safe mode when conditions that threaten the platform are detected, enters a cyber-safe mode of operation with restrictions as defined based on the cyber-safe mode.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4,IR-4(1),IR-4(3),PE-10,RA-10,SA-8(16),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-13,SI-17}
The [spacecraft] shall provide the capability to enter the platform into a known good, operational cyber-safe mode from a tamper-resistant, configuration-controlled (“gold”) image that is authenticated as coming from an acceptable supplier, and has its integrity verified.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4(3),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-13,SI-17} Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and SW functions to preattack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on available equipment still available after a cyberattack. The goal is for the vehicle to resume full mission operations. If not possible, a reduced level of mission capability should be achieved.
The [spacecraft] shall fail to a known secure state for failures during initialization, and aborts preserving information necessary to return to operations in failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(24),SC-24,SI-13,SI-17}
The [spacecraft] shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution).{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2}{CP-13,SA-8(19),SA-8(24),SC-7(18),SI-13,SI-13(4)}
The [spacecraft] shall provide or support the capability for recovery and reconstitution to a known state after a disruption, compromise, or failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-4(4),CP-10,CP-10(4),CP-10(6),CP-13,IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(24)}
The [spacecraft] shall have multiple uplink paths {SV-AV-1}{CP-8,CP-11,SA-8(18),SC-5,SC-47}
The [spacecraft] shall utilize TRANSEC.{SV-AV-1}{CP-8,RA-5(4),SA-8(18),SA-8(19),SC-8(1),SC-8(4),SC-16,SC-16(1),SC-16(2),SC-16(3),SC-40(4)} Transmission Security (TRANSEC) is used to ensure the availability of transmissions and limit intelligence collection from the transmissions. TRANSEC is secured through burst encoding, frequency hopping, or spread spectrum methods where the required pseudorandom sequence generation is controlled by a cryptographic algorithm and key. Such keys are known as transmission security keys (TSK). The objectives of transmission security are low probability of interception (LPI), low probability of detection (LPD), and antijam which means resistance to jamming (EPM or ECCM).
The [spacecraft] shall maintain the ability to establish communication with the spacecraft in the event of an anomaly to the primary receive path.{SV-AV-1,SV-IT-1}{CP-8,SA-8(18),SC-47} Receiver communication can be established after an anomaly with such capabilities as multiple receive apertures, redundant paths within receivers, redundant receivers, omni apertures, fallback default command modes, and lower bit rates for contingency commanding, as examples
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards: [NSA- certified or approved cryptography for protection of classified information, FIPS-validated cryptography for the provision of hashing].{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2,SV-AC-3}{IA-7,SC-13}
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)} The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management.
The [spacecraft] shall generate error messages that provide information necessary for corrective actions without revealing information that could be exploited by adversaries.{SV-AV-5,SV-AV-6,SV-AV-7}{RA-5(4),SI-4(12),SI-11}
The [spacecraft] shall reveal error messages only to operations personnel monitoring the telemetry.{SV-AV-5,SV-AV-6,SV-AV-7}{RA-5(4),SI-4(12),SI-11}
The [spacecraft] shall implement cryptographic mechanisms that achieve adequate protection against the effects of intentional electromagnetic interference.{SV-AV-1,SV-IT-1}{SA-8(19),SC-8(1),SC-40,SC-40(1)}
The [organization] shall use NIST Approved for symmetric key management for Unclassified systems; NSA Approved or stronger symmetric key management technology for Classified systems.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(2)} FIPS-complaint technology used by the Program shall include (but is not limited to) cryptographic key generation algorithms or key distribution techniques that are either a) specified in a FIPS, or b) adopted in a FIPS and specified either in an appendix to the FIPS or in a document referenced by the FIPS. NSA-approved technology used for symmetric key management by the Program shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.
The [organization] shall use NSA approved key management technology and processes.NSA-approved technology used for asymmetric key management by The [organization] shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)}
The [spacecraft] shall produce, control, and distribute asymmetric cryptographic keys using [organization]-defined asymmetric key management processes.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)} In most cased the Program will leverage NSA-approved key management technology and processes.
The [spacecraft] shall protect external and internal communications from jamming and spoofing attempts.{SV-AV-1,SV-IT-1}{SC-5,SC-40,SC-40(1)} Can be aided via the Crosslink, S-Band, and L-Band subsystems
The [spacecraft] shall monitor [Program defined telemetry points] for malicious commanding attempts.{SV-AC-1,SV-AC-2}{SC-7,AU-3(1),AC-17(1)} Source from AEROSPACE REPORT NO. TOR-2019-02178 Vehicle Command Counter (VCC) - Counts received valid commands Rejected Command Counter - Counts received invalid commands Command Receiver On/Off Mode - Indicates times command receiver is accepting commands Command Receivers Received Signal Strength - Analog measure of the amount of received RF energy at the receive frequency Command Receiver Lock Modes - Indicates when command receiver has achieved lock on command signal Telemetry Downlink Modes - Indicates when the satellite’s telemetry was transmitting Cryptographic Modes - Indicates the operating modes of the various encrypted links Received Commands - Log of all commands received and executed by the satellite System Clock - Master onboard clock GPS Ephemeris - Indicates satellite location derived from GPS Signals
The [spacecraft] cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.{SV-AV-5,SV-AV-6,SV-AV-7}{SI-17} Cyber-safe mode is using a fail-secure mentality where if there is a malfunction that the spacecraft goes into a fail-secure state where cyber protections like authentication and encryption are still employed (instead of bypassed) and the spacecraft can be restored by authorized commands. The cyber-safe mode should be stored in a high integrity location of the on-board SV so that it cannot be modified by attackers.
The [organization] shall ensure that FMEA/FMECA artifacts are strictly controlled so that particular fault responses are not disclosed via documentation.{SV-AV-5}