Attempting access to an access-controlled system resulting in unauthorized access
Requirement | Rationale/Additional Guidance/Notes |
---|---|
The [organization] shall define policy and procedures to ensure that the developed or delivered systems do not embed unencrypted static authenticators in applications, access scripts, configuration files, nor store unencrypted static authenticators on function keys.{SV-AC-1,SV-AC-3}{IA-5(7)} | |
The [spacecraft] shall terminate the connection associated with a communications session at the end of the session or after 3 minutes of inactivity.{SV-AC-1}{AC-12,SA-8(18),SC-10,SC-23(1),SC-23(3),SI-14,SI-14(3)} | |
The [spacecraft] shall protect authenticator content from unauthorized disclosure and modification.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),IA-5,IA-5(6),RA-5(4),SA-8(18),SA-8(19),SC-28(3)} | |
The [spacecraft] encryption key handling shall be handled outside of the onboard software and protected using cryptography.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(1),SC-28(3)} | |
The [spacecraft] encryption keys shall be restricted so that the onboard software is not able to access the information for key readout.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)} | |
The [spacecraft] encryption keys shall be restricted so that they cannot be read via any telecommands.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)} | |
The [spacecraft] shall produce, control, and distribute symmetric cryptographic keys using NSA Certified or Approved key management technology and processes per CNSSP 12.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-9(6),SC-12,SC-12(1),SC-12(2),SC-12(3)} | |
The [spacecraft] shall provide the capability to restrict command lock based on geographic location of ground stations.{SV-AC-1}{AC-2(11),IA-10,SI-4(13),SI-4(25)} | This could be performed using command lockout based upon when the spacecraft is over selected regions. This should be configurable so that when conflicts arise, the Program can update. The goal is so the spacecraft won't accept a command when the spacecraft determines it is in a certain region. |
The [spacecraft] shall restrict the use of information inputs to spacecraft and designated ground stations as defined in the applicable ICDs.{SV-AC-1,SV-AC-2}{AC-20,SC-23,SI-10,SI-10(5),SI-10(6)} | |
The [spacecraft] shall uniquely identify and authenticate the ground station and other spacecraft before establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(10),AC-20,IA-3,IA-4,SA-8(18),SI-3(9)} | |
The [spacecraft] shall authenticate the ground station (and all commands) and other spacecraft before establishing remote connections using bidirectional authentication that is cryptographically based.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(2),AC-17(10),AC-18(1),AC-20,IA-3(1),IA-4,IA-4(9),IA-7,IA-9,SA-8(18),SA-8(19),SA-9(2),SC-7(11),SC-16(1),SC-16(2),SC-16(3),SC-23(3),SI-3(9)} | Authorization can include embedding opcodes in command strings, using trusted authentication protocols, identifying proper link characteristics such as emitter location, expected range of receive power, expected modulation, data rates, communication protocols, beamwidth, etc.; and tracking command counter increments against expected values. |
The [spacecraft] shall implement relay and replay-resistant authentication mechanisms for establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,IA-2(8),IA-2(9),SA-8(18),SC-8(1),SC-16(1),SC-16(2),SC-23(3),SC-40(4)} | |
The [spacecraft] shall not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode).{SV-AC-1,SV-CF-1,SV-CF-2}{AC-3(10),SA-8(18),SA-8(19),SC-16(2),SC-16(3),SC-40(4)} | |
The [spacecraft] shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution).{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2}{CP-13,SA-8(19),SA-8(24),SC-7(18),SI-13,SI-13(4)} | |
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards: [NSA- certified or approved cryptography for protection of classified information, FIPS-validated cryptography for the provision of hashing].{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2,SV-AC-3}{IA-7,SC-13} | |
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)} | The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management. |
The [organization] shall use NIST Approved for symmetric key management for Unclassified systems; NSA Approved or stronger symmetric key management technology for Classified systems.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(2)} | FIPS-complaint technology used by the Program shall include (but is not limited to) cryptographic key generation algorithms or key distribution techniques that are either a) specified in a FIPS, or b) adopted in a FIPS and specified either in an appendix to the FIPS or in a document referenced by the FIPS. NSA-approved technology used for symmetric key management by the Program shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria. |
The [organization] shall use NSA approved key management technology and processes.NSA-approved technology used for asymmetric key management by The [organization] shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)} | |
The [spacecraft] shall produce, control, and distribute asymmetric cryptographic keys using [organization]-defined asymmetric key management processes.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)} | In most cased the Program will leverage NSA-approved key management technology and processes. |
The [spacecraft] shall monitor [Program defined telemetry points] for malicious commanding attempts.{SV-AC-1,SV-AC-2}{SC-7,AU-3(1),AC-17(1)} | Source from AEROSPACE REPORT NO. TOR-2019-02178 Vehicle Command Counter (VCC) - Counts received valid commands Rejected Command Counter - Counts received invalid commands Command Receiver On/Off Mode - Indicates times command receiver is accepting commands Command Receivers Received Signal Strength - Analog measure of the amount of received RF energy at the receive frequency Command Receiver Lock Modes - Indicates when command receiver has achieved lock on command signal Telemetry Downlink Modes - Indicates when the satellite’s telemetry was transmitting Cryptographic Modes - Indicates the operating modes of the various encrypted links Received Commands - Log of all commands received and executed by the satellite System Clock - Master onboard clock GPS Ephemeris - Indicates satellite location derived from GPS Signals |
ID | Name | Description | |
---|---|---|---|
RD-0002 | Compromise Infrastructure | Threat actors may compromise third-party infrastructure that can be used for future campaigns or to perpetuate other techniques. Infrastructure solutions include physical devices such as antenna, amplifiers, and convertors, as well as software used by satellite communicators. Instead of buying or renting infrastructure, a threat actor may compromise infrastructure and use it during other phases of the campaign's lifecycle. | |
RD-0002.01 | Mission-Operated Ground System | Threat actors may compromise mission owned/operated ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration. | |
RD-0002.02 | 3rd Party Ground System | Threat actors may compromise access to third-party ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems can be or may have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. | |
RD-0002.03 | 3rd-Party Spacecraft | Threat actors may compromise a 3rd-party spacecraft that has the capability to maneuver within close proximity to a target spacecraft. This technique enables historically lower-tier attackers the same capability as top tier nation-state actors without the initial development cost. Additionally, this technique complicates attribution of an attack. Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference. Further, the compromised spacecraft may posses the capability to grapple target spacecraft once it has established the appropriate space rendezvous. If from a proximity / rendezvous perspective a threat actor has the ability to connect via docking interface or expose testing (i.e., JTAG port) once it has grappled the target spacecraft, they could perform various attacks depending on the access enabled via the physical connection. | |
IA-0003 | Crosslink via Compromised Neighbor | Threat actors may compromise a victim spacecraft via the crosslink communications of a neighboring spacecraft that has been compromised. spacecraft in close proximity are able to send commands back and forth. Threat actors may be able to leverage this access to compromise other spacecraft once they have access to another that is nearby. | |
IA-0007 | Compromise Ground System | Threat actors may initially compromise the ground system in order to access the target spacecraft. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes. Threat actors may also perform further reconnaissance within the system to enumerate mission networks and gather information related to ground station logical topology, missions ran out of said ground station, birds that are in-band of targeted ground stations, and other mission system capabilities. | |
IA-0007.01 | Compromise On-Orbit Update | Threat actors may manipulate and modify on-orbit updates before they are sent to the target spacecraft. This attack can be done in a number of ways, including manipulation of source code, manipulating environment variables, on-board table/memory values, or replacing compiled versions with a malicious one. | |
IA-0007.02 | Malicious Commanding via Valid GS | Threat actors may compromise target owned ground systems components (e.g., front end processors, command and control software, etc.) that can be used for future campaigns or to perpetuate other techniques. These ground systems components have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration. | |
IA-0008 | Rogue External Entity | Threat actors may gain access to a victim spacecraft through the use of a rogue external entity. With this technique, the threat actor does not need access to a legitimate ground station or communication site. | |
IA-0008.01 | Rogue Ground Station | Threat actors may gain access to a victim spacecraft through the use of a rogue ground system. With this technique, the threat actor does not need access to a legitimate ground station or communication site. | |
EX-0001 | Replay | Replay attacks involve threat actors recording previously recorded data streams and then resending them at a later time. This attack can be used to fingerprint systems, gain elevated privileges, or even cause a denial of service. | |
EX-0001.01 | Command Packets | Threat actors may interact with the victim spacecraft by replaying captured commands to the spacecraft. While not necessarily malicious in nature, replayed commands can be used to overload the target spacecraft and cause it's onboard systems to crash, perform a DoS attack, or monitor various responses by the spacecraft. If critical commands are captured and replayed, thruster fires, then the impact could impact the spacecraft's attitude control/orbit. | |
PER-0004 | Replace Cryptographic Keys | Threat actors may attempt to fully replace the cryptographic keys on the spacecraft which could lockout the mission operators and enable the threat actor's communication channel. Once the encryption key is changed on the spacecraft, the spacecraft is rendered inoperable from the operators perspective as they have lost commanding access. Threat actors may exploit weaknesses in the key management strategy. For example, the threat actor may exploit the over-the-air rekeying procedures to inject their own cryptographic keys. | |
LM-0003 | Constellation Hopping via Crosslink | Threat actors may attempt to command another neighboring spacecraft via crosslink. spacecraft in close proximity are often able to send commands back and forth. Threat actors may be able to leverage this access to compromise another spacecraft. | |
LM-0004 | Visiting Vehicle Interface(s) | Threat actors may move from one spacecraft to another through visiting vehicle interfaces. When a vehicle docks with a spacecraft, many programs are automatically triggered in order to ensure docking mechanisms are locked. This entails several data points and commands being sent to and from the spacecraft and the visiting vehicle. If a threat actor were to compromise a visiting vehicle, they could target these specific programs in order to send malicious commands to the victim spacecraft once docked. | |
LM-0006 | Launch Vehicle Interface | Threat actors may attempt to exploit reduced protections placed on the interfaces between launch vehicles and payloads in order to move from one to the other. | |
LM-0006.01 | Rideshare Payload | Threat actors may also attempt to move laterally across the payloads themselves in cases where multiple customers are sharing the same launch vehicle, and security mechanisms are not sufficient to prevent payload to payload communication via the launch vehicle. | |
EXF-0004 | Out-of-Band Communications Link | Threat actors may attempt to exfiltrate data via the out-of-band communication channels. While performing eavesdropping on the primary/second uplinks and downlinks is a method for exfiltration, some spacecrafts leverage out-of-band communication links to perform actions on the spacecraft (i.e., re-keying). These out-of-band links would occur on completely different channels/frequencies and often operate on separate hardware on the spacecraft. Typically these out-of-band links have limited built-for-purpose functionality and likely do not present an initial access vector but they do provide ample exfiltration opportunity. | |
IMP-0001 | Deception (or Misdirection) | Measures designed to mislead an adversary by manipulation, distortion, or falsification of evidence or information into a system to induce the adversary to react in a manner prejudicial to their interests. Threat actors may seek to deceive mission stakeholders (or even military decision makers) for a multitude of reasons. Telemetry values could be modified, attacks could be designed to intentionally mimic another threat actor's TTPs, and even allied ground infrastructure could be compromised and used as the source of communications to the spacecraft. | |
IMP-0006 | Theft | Threat actors may attempt to steal the data that is being gathered, processed, and sent from the victim spacecraft. Many spacecraft have a particular purpose associated with them and the data they gather is deemed mission critical. By attempting to steal this data, the mission, or purpose, of the spacecraft could be lost entirely. |
ID | Name | Description | NIST Rev5 | D3FEND | ISO 27001 | |
---|---|---|---|---|---|---|
CM0052 | Insider Threat Protection | Establish policy and procedures to prevent individuals (i.e., insiders) from masquerading as individuals with valid access to areas where commanding of the spacecraft is possible. Establish an Insider Threat Program to aid in the prevention of people with authorized access performing malicious activities. | AC-14 AC-3(11) AC-3(13) AC-3(15) AC-6 AT-2 AT-2(2) AT-2(4) AT-2(5) AT-2(6) AU-10 AU-12 AU-13 AU-6 AU-7 CA-7 CP-2 IA-12 IA-12(1) IA-12(2) IA-12(3) IA-12(4) IA-12(5) IA-12(6) IA-4 IR-2(3) IR-4 IR-4(6) IR-4(7) MA-7 MP-7 PE-2 PL-8 PL-8(1) PM-12 PM-14 PS-3 PS-4 PS-5 PS-8 RA-10 SA-3 SA-8 SC-38 SC-7 SI-4 SR-11(2) | D3-OAM D3-AM D3-OM D3-CH D3-SPP D3-MFA D3-UAP D3-UBA | A.8.4 A.5.15 A.8.2 A.8.18 7.3 A.6.3 A.8.7 A.5.25 A.6.8 A.8.15 A.8.15 A.8.12 A.8.16 9.1 9.3.2 9.3.3 A.5.36 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.16 A.5.25 A.5.26 A.5.27 A.5.10 A.7.10 A.7.2 A.5.8 A.6.1 A.5.11 A.6.5 A.5.11 A.6.5 7.3 A.6.4 A.5.7 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.16 | |
CM0054 | Two-Person Rule | Utilize a two-person system to achieve a high level of security for systems with command level access to the spacecraft. Under this rule all access and actions require the presence of two authorized people at all times. | AC-14 AC-3(13) AC-3(15) AC-3(2) AU-9(5) CP-2 IA-12 IA-12(1) IA-12(2) IA-12(3) IA-12(4) IA-12(5) IA-12(6) PE-3 SA-8(15) | D3-OAM D3-AM D3-ODM D3-OM D3-MFA | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.7.1 A.7.2 A.7.3 A.7.4 | |
CM0079 | Maneuverability | Satellite maneuver is an operational tactic that can be used by satellites fitted with chemical thrusters to avoid kinetic and some directed energy ASAT weapons. For unguided projectiles, a satellite can be commanded to move out of their trajectory to avoid impact. If the threat is a guided projectile, like most direct-ascent ASAT and co-orbital ASAT weapons, maneuver becomes more difficult and is only likely to be effective if the satellite can move beyond the view of the onboard sensors on the guided warhead.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-10(6) CP-13 CP-2 CP-2(1) CP-2(3) CP-2(5) PE-20 PE-21 | None | 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.29 A.5.10 | |
CM0084 | Physical Seizure | A spacecraft capable of docking with, manipulating, or maneuvering other satellites or pieces of debris can be used to thwart spacebased attacks or mitigate the effects after an attack has occurred. Such a system could be used to physically seize a threatening satellite that is being used to attack or endanger other satellites or to capture a satellite that has been disabled or hijacked for nefarious purposes. Such a system could also be used to collect and dispose of harmful orbital debris resulting from an attack. A key limitation of a physical seizure system is that each satellite would be time- and propellant-limited depending on the orbit in which it is stored. A system stored in GEO, for example, would not be well positioned to capture an object in LEO because of the amount of propellant required to maneuver into position. Physical seizure satellites may need to be stored on Earth and deployed once they are needed to a specific orbit to counter a specific threat.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG | CP-13 PE-20 | D3-AM | A.5.29 A.5.10 | |
CM0002 | COMSEC | A component of cybersecurity to deny unauthorized persons information derived from telecommunications and to ensure the authenticity of such telecommunications. COMSEC includes cryptographic security, transmission security, emissions security, and physical security of COMSEC material. It is imperative to utilize secure communication protocols with strong cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission. Systems should also maintain the confidentiality and integrity of information during preparation for transmission and during reception. Spacecraft should not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). The cryptographic mechanisms should identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters. | AC-17 AC-17(1) AC-17(10) AC-17(10) AC-17(2) AC-18 AC-18(1) AC-2(11) AC-3(10) CA-3 IA-4(9) IA-5 IA-5(7) IA-7 PL-8 PL-8(1) SA-8(18) SA-8(19) SA-9(6) SC-10 SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-13 SC-16(3) SC-28(1) SC-28(3) SC-7 SC-7(10) SC-7(11) SC-7(18) SC-7(5) SC-8(1) SC-8(3) SI-10 SI-10(3) SI-10(5) SI-10(6) SI-19(4) SI-3(8) | D3-ET D3-MH D3-MAN D3-MENCR D3-NTF D3-ITF D3-OTF D3-CH D3-DTP D3-NTA D3-CAA D3-DNSTA D3-IPCTA D3-NTCD D3-RTSD D3-PHDURA D3-PMAD D3-CSPP D3-MA D3-SMRA D3-SRA | A.5.14 A.6.7 A.8.1 A.8.16 A.5.14 A.8.1 A.8.20 A.5.14 A.8.21 A.5.16 A.5.17 A.5.8 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.12 A.5.33 A.8.20 A.8.24 A.8.24 A.8.26 A.5.31 A.5.33 A.8.11 | |
CM0030 | Crypto Key Management | Leverage best practices for crypto key management as defined by organization like NIST or the National Security Agency. Leverage only approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria. Encryption key handling should be performed outside of the onboard software and protected using cryptography. Encryption keys should be restricted so that they cannot be read via any telecommands. | CM-3(6) PL-8 PL-8(1) SA-3 SA-4(5) SA-8 SA-9(6) SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-28(3) SC-8(1) | D3-CH D3-CP | A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.33 A.8.24 | |
CM0031 | Authentication | Authenticate all communication sessions (crosslink and ground stations) for all commands before establishing remote connections using bidirectional authentication that is cryptographically based. Adding authentication on the spacecraft bus and communications on-board the spacecraft is also recommended. | AC-14 AC-17 AC-17(10) AC-17(10) AC-17(2) AC-18 AC-18(1) IA-2 IA-3(1) IA-4 IA-4(9) IA-7 IA-9 PL-8 PL-8(1) SA-3 SA-4(5) SA-8 SA-8(15) SA-8(9) SC-16 SC-16(1) SC-16(2) SC-32(1) SC-7(11) SC-8(1) SI-14(3) SI-7(6) | D3-MH D3-MAN D3-CH D3-BAN D3-MFA D3-TAAN D3-CBAN | A.5.14 A.6.7 A.8.1 A.5.14 A.8.1 A.8.20 A.5.16 A.5.16 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.33 | |
CM0033 | Relay Protection | Implement relay and replay-resistant authentication mechanisms for establishing a remote connection or connections on the spacecraft bus. | AC-17(10) AC-17(10) IA-2(8) IA-3 IA-3(1) IA-4 IA-7 SC-13 SC-16(1) SC-23 SC-23(1) SC-23(3) SC-7 SC-7(11) SC-7(18) SI-10 SI-10(5) SI-10(6) SI-3(8) | D3-ITF D3-NTA D3-OTF | A.5.16 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.24 A.8.26 A.5.31 | |
CM0003 | TEMPEST | The spacecraft should protect system components, associated data communications, and communication buses in accordance with TEMPEST controls to prevent side channel / proximity attacks. Encompass the spacecraft critical components with a casing/shielding so as to prevent access to the individual critical components. | PE-19 PE-19(1) PE-21 SC-8(3) | D3-PH D3-RFS | A.7.5 A.7.8 A.8.12 | |
CM0050 | On-board Message Encryption | In addition to authentication on-board the spacecraft bus, encryption is also recommended to protect the confidentiality of the data traversing the bus. | AC-4 AC-4(23) AC-4(24) AC-4(26) AC-4(31) AC-4(32) PL-8 PL-8(1) SA-3 SA-8 SA-8(18) SA-8(19) SA-8(9) SA-9(6) SC-13 SC-16 SC-16(1) SC-16(2) SC-16(3) SC-8(1) SC-8(3) SI-19(4) SI-4(10) SI-4(25) | D3-MH D3-MENCR D3-ET | A.5.14 A.8.22 A.8.23 A.8.11 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.33 A.8.24 A.8.26 A.5.31 A.8.11 | |
CM0036 | Session Termination | Terminate the connection associated with a communications session at the end of the session or after an acceptable amount of inactivity which is established via the concept of operations. | AC-12 AC-12(2) SC-10 SI-14(3) SI-4(7) | D3-SDA | A.8.20 | |
CM0055 | Secure Command Mode(s) | Provide additional protection modes for commanding the spacecraft. These can be where the spacecraft will restrict command lock based on geographic location of ground stations, special operational modes within the flight software, or even temporal controls where the spacecraft will only accept commands during certain times. | AC-17(1) AC-17(10) AC-2(11) AC-2(12) AC-3 AC-3(2) AC-3(3) AC-3(4) AC-3(8) CA-3(7) IA-10 PL-8 PL-8(1) SA-3 SA-8 SC-7 SI-3(8) | D3-AH D3-ACH D3-MFA D3-OTP | A.8.16 A.5.15 A.5.33 A.8.3 A.8.4 A.8.18 A.8.20 A.8.2 A.8.16 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 | |
CM0005 | Ground-based Countermeasures | This countermeasure is focused on the protection of terrestrial assets like ground networks and development environments/contractor networks, etc. Traditional detection technologies and capabilities would be applicable here. Utilizing resources from NIST CSF to properly secure these environments using identify, protect, detect, recover, and respond is likely warranted. Additionally, NISTIR 8401 may provide resources as well since it was developed to focus on ground-based security for space systems (https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8401.ipd.pdf). Furthermore, the MITRE ATT&CK framework provides IT focused TTPs and their mitigations https://attack.mitre.org/mitigations/enterprise/. Several recommended NIST 800-53 Rev5 controls are provided for reference when designing ground systems/networks. | AC-1 AC-10 AC-11 AC-11(1) AC-12 AC-12(1) AC-14 AC-16 AC-16(6) AC-17 AC-17 AC-17(1) AC-17(10) AC-17(2) AC-17(3) AC-17(4) AC-17(6) AC-17(9) AC-18 AC-18 AC-18(1) AC-18(3) AC-18(4) AC-18(5) AC-19 AC-19(5) AC-2 AC-2 AC-2(1) AC-2(11) AC-2(12) AC-2(13) AC-2(2) AC-2(3) AC-2(4) AC-2(9) AC-20 AC-20(1) AC-20(2) AC-20(3) AC-20(5) AC-21 AC-22 AC-3 AC-3(11) AC-3(13) AC-3(15) AC-3(4) AC-4 AC-4(23) AC-4(24) AC-4(25) AC-4(26) AC-4(31) AC-4(32) AC-6 AC-6(1) AC-6(10) AC-6(2) AC-6(3) AC-6(5) AC-6(8) AC-6(9) AC-7 AC-8 AT-2(4) AT-2(4) AT-2(5) AT-2(6) AT-3 AT-3(2) AT-4 AU-10 AU-11 AU-12 AU-12(1) AU-12(3) AU-14 AU-14(1) AU-14(3) AU-2 AU-3 AU-3(1) AU-4 AU-4(1) AU-5 AU-5(1) AU-5(2) AU-5(5) AU-6 AU-6(1) AU-6(3) AU-6(4) AU-6(5) AU-6(6) AU-7 AU-7(1) AU-8 AU-9 AU-9(2) AU-9(3) AU-9(4) CA-3 CA-3 CA-3(6) CA-3(7) CA-7 CA-7(1) CA-7(6) CA-8 CA-8(1) CA-8(1) CA-9 CM-10(1) CM-11 CM-11 CM-11(2) CM-11(3) CM-12 CM-12(1) CM-14 CM-2 CM-2(2) CM-2(3) CM-2(7) CM-3 CM-3(1) CM-3(2) CM-3(4) CM-3(5) CM-3(6) CM-3(7) CM-3(7) CM-3(8) CM-4 CM-5(1) CM-5(5) CM-6 CM-6(1) CM-6(2) CM-7 CM-7(1) CM-7(2) CM-7(3) CM-7(5) CM-7(8) CM-7(8) CM-7(9) CM-8 CM-8(1) CM-8(2) CM-8(3) CM-8(4) CM-9 CP-10 CP-10(2) CP-10(4) CP-2 CP-2 CP-2(2) CP-2(5) CP-2(8) CP-3(1) CP-4(1) CP-4(2) CP-4(5) CP-8 CP-8(1) CP-8(2) CP-8(3) CP-8(4) CP-8(5) CP-9 CP-9(1) CP-9(2) CP-9(3) IA-11 IA-12 IA-12(1) IA-12(2) IA-12(3) IA-12(4) IA-12(5) IA-12(6) IA-2 IA-2(1) IA-2(12) IA-2(2) IA-2(5) IA-2(6) IA-2(8) IA-3 IA-3(1) IA-4 IA-4(9) IA-5 IA-5(1) IA-5(13) IA-5(14) IA-5(2) IA-5(7) IA-5(8) IA-6 IA-7 IA-8 IR-2 IR-2(2) IR-2(3) IR-3 IR-3(1) IR-3(2) IR-3(3) IR-4 IR-4(1) IR-4(10) IR-4(11) IR-4(11) IR-4(12) IR-4(13) IR-4(14) IR-4(3) IR-4(4) IR-4(5) IR-4(6) IR-4(7) IR-4(8) IR-5 IR-5(1) IR-6 IR-6(1) IR-6(2) IR-7 IR-7(1) IR-8 MA-2 MA-3 MA-3(1) MA-3(2) MA-3(3) MA-4 MA-4(1) MA-4(3) MA-4(6) MA-4(7) MA-5(1) MA-6 MA-7 MP-2 MP-3 MP-4 MP-5 MP-6 MP-6(3) MP-7 PE-3(7) PL-10 PL-11 PL-8 PL-8(1) PL-8(2) PL-9 PL-9 PM-11 PM-16(1) PM-17 PM-30 PM-30(1) PM-31 PM-32 RA-10 RA-3(1) RA-3(2) RA-3(2) RA-3(3) RA-3(4) RA-5 RA-5(10) RA-5(11) RA-5(2) RA-5(4) RA-5(5) RA-7 RA-9 RA-9 SA-10 SA-10(1) SA-10(2) SA-10(7) SA-11 SA-11 SA-11(2) SA-11(4) SA-11(7) SA-11(9) SA-15 SA-15(3) SA-15(7) SA-17 SA-17 SA-2 SA-2 SA-22 SA-3 SA-3 SA-3(1) SA-3(2) SA-3(2) SA-4 SA-4 SA-4(1) SA-4(10) SA-4(12) SA-4(2) SA-4(3) SA-4(3) SA-4(5) SA-4(5) SA-4(7) SA-4(9) SA-4(9) SA-5 SA-8 SA-8 SA-8(14) SA-8(15) SA-8(18) SA-8(21) SA-8(22) SA-8(23) SA-8(24) SA-8(29) SA-8(9) SA-9 SA-9 SA-9(1) SA-9(2) SA-9(6) SA-9(7) SC-10 SC-12 SC-12(1) SC-12(6) SC-13 SC-15 SC-16(2) SC-16(3) SC-18(1) SC-18(2) SC-18(3) SC-18(4) SC-2 SC-2(2) SC-20 SC-21 SC-22 SC-23 SC-23(1) SC-23(3) SC-23(5) SC-24 SC-28 SC-28(1) SC-28(3) SC-3 SC-38 SC-39 SC-4 SC-45 SC-45(1) SC-45(1) SC-45(2) SC-49 SC-5 SC-5(1) SC-5(2) SC-5(3) SC-50 SC-51 SC-7 SC-7(10) SC-7(11) SC-7(12) SC-7(13) SC-7(14) SC-7(18) SC-7(21) SC-7(25) SC-7(29) SC-7(3) SC-7(4) SC-7(5) SC-7(5) SC-7(7) SC-7(8) SC-7(9) SC-8 SC-8(1) SC-8(2) SC-8(5) SI-10 SI-10(3) SI-10(6) SI-11 SI-12 SI-14(3) SI-16 SI-19(4) SI-2 SI-2(2) SI-2(3) SI-2(6) SI-21 SI-3 SI-3 SI-3(10) SI-3(10) SI-4 SI-4(1) SI-4(10) SI-4(11) SI-4(12) SI-4(13) SI-4(14) SI-4(15) SI-4(16) SI-4(17) SI-4(2) SI-4(20) SI-4(22) SI-4(23) SI-4(24) SI-4(25) SI-4(4) SI-4(5) SI-5 SI-5(1) SI-6 SI-7 SI-7 SI-7(1) SI-7(17) SI-7(2) SI-7(5) SI-7(7) SI-7(8) SR-1 SR-1 SR-10 SR-11 SR-11 SR-11(1) SR-11(2) SR-11(3) SR-12 SR-2 SR-2(1) SR-3 SR-3(1) SR-3(2) SR-3(2) SR-3(3) SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5 SR-5(1) SR-5(2) SR-6 SR-6(1) SR-6(1) SR-7 SR-7 SR-8 SR-9 SR-9(1) | Nearly all D3FEND Techniques apply to Ground | 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.15 A.5.31 A.5.36 A.5.37 A.5.16 A.5.18 A.8.2 A.8.16 A.5.15 A.5.33 A.8.3 A.8.4 A.8.18 A.8.20 A.8.2 A.8.4 A.5.14 A.8.22 A.8.23 A.8.11 A.8.10 A.5.15 A.8.2 A.8.18 A.8.5 A.8.5 A.7.7 A.8.1 A.5.14 A.6.7 A.8.1 A.8.16 A.5.14 A.8.1 A.8.20 A.5.14 A.7.9 A.8.1 A.5.14 A.7.9 A.8.20 A.6.3 A.8.15 A.8.15 A.8.6 A.5.25 A.6.8 A.8.15 A.7.4 A.8.17 A.5.33 A.8.15 A.5.28 A.8.15 A.8.15 A.8.15 A.5.14 A.8.21 9.1 9.3.2 9.3.3 A.5.36 9.2.2 A.8.9 A.8.9 8.1 9.3.3 A.8.9 A.8.32 A.8.9 A.8.9 A.8.9 A.8.9 A.8.19 A.8.19 A.5.9 A.8.9 A.5.2 A.8.9 A.8.19 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.30 A.5.30 A.5.29 A.7.11 A.5.29 A.5.33 A.8.13 A.5.29 A.5.16 A.5.16 A.5.16 A.5.17 A.8.5 A.5.16 A.6.3 A.5.25 A.5.26 A.5.27 A.8.16 A.5.5 A.6.8 7.5.1 7.5.2 7.5.3 A.5.24 A.7.10 A.7.13 A.8.10 A.8.10 A.8.16 A.8.10 A.7.13 A.5.10 A.7.7 A.7.10 A.5.13 A.5.10 A.7.7 A.7.10 A.8.10 A.5.10 A.7.9 A.7.10 A.5.10 A.7.10 A.7.14 A.8.10 A.5.10 A.7.10 A.5.8 A.5.7 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 4.4 6.2 7.4 7.5.1 7.5.2 7.5.3 9.1 9.2.2 10.1 10.2 A.8.8 6.1.3 8.3 10.2 A.5.22 A.5.7 A.5.2 A.5.8 A.8.25 A.8.31 A.8.33 8.1 A.5.8 A.5.20 A.5.23 A.8.29 A.8.30 A.8.28 7.5.1 7.5.2 7.5.3 A.5.37 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.9 A.8.28 A.8.30 A.8.32 A.8.29 A.8.30 A.5.8 A.8.25 A.8.25 A.8.27 A.8.6 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.23 A.8.12 A.5.10 A.5.14 A.8.20 A.8.26 A.5.33 A.8.20 A.8.24 A.8.24 A.8.26 A.5.31 A.5.14 A.5.10 A.5.33 A.6.8 A.8.8 A.8.32 A.8.7 A.8.16 A.8.16 A.8.16 A.8.16 A.5.6 A.8.11 A.8.10 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29 A.5.22 A.5.22 | |
CM0034 | Monitor Critical Telemetry Points | Monitor defined telemetry points for malicious activities (i.e., jamming attempts, commanding attempts (e.g., command modes, counters, etc.)). This would include valid/processed commands as well as commands that were rejected. Telemetry monitoring should synchronize with ground-based Defensive Cyber Operations (i.e., SIEM/auditing) to create a full space system situation awareness from a cybersecurity perspective. | AC-17(1) AU-3(1) CA-7(6) IR-4(14) PL-8 PL-8(1) SA-8(13) SC-16 SC-16(1) SC-7 SI-3(8) SI-4(7) | D3-NTA D3-PM D3-PMAD D3-RTSD | A.8.16 A.5.8 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 | |
CM0035 | Protect Authenticators | Protect authenticator content from unauthorized disclosure and modification. | AC-17(6) AC-3(11) CM-3(6) IA-4(9) IA-5 IA-5(6) PL-8 PL-8(1) SA-3 SA-4(5) SA-8 SA-8(13) SA-8(19) SC-16 SC-16(1) SC-8(1) | D3-CE D3-ANCI D3-CA D3-ACA D3-PCA D3-CRO D3-CTS D3-SPP | A.8.4 A.5.16 A.5.17 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.33 | |
CM0053 | Physical Security Controls | Employ physical security controls (badge with pins, guards, gates, etc.) to prevent unauthorized access to the systems that have the ability to command the spacecraft. | AC-14 CA-3(6) CA-8 CA-8(1) CA-8(1) CA-8(3) PE-2 PE-2(1) PE-2(3) PE-3 PE-3(1) PE-3(2) PE-3(3) PE-3(5) PE-3(7) SA-3 SA-8 SC-12(6) SC-51 SC-8(5) SR-11(2) | D3-RFS D3-AM | A.7.2 A.7.1 A.7.2 A.7.3 A.7.4 A.8.12 A.7.4 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 | |
CM0070 | Alternate Communications Paths | Establish alternate communications paths to reduce the risk of all communications paths being affected by the same incident. | AC-17 CP-2 CP-4(2) CP-8(3) PL-8 PL-8(1) SC-47 | D3-NM D3-NTPM | A.5.14 A.6.7 A.8.1 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.8 | |
CM0032 | On-board Intrusion Detection & Prevention | Utilize on-board intrusion detection/prevention system that monitors the mission critical components or systems and audit/logs actions. The IDS/IPS should have the capability to respond to threats (initial access, execution, persistence, evasion, exfiltration, etc.) and it should address signature-based attacks along with dynamic never-before seen attacks using machine learning/adaptive technologies. The IDS/IPS must integrate with traditional fault management to provide a wholistic approach to faults on-board the spacecraft. Spacecraft should select and execute safe countermeasures against cyber-attacks. These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker — with or without ground support. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system. | AU-14 AU-2 AU-3 AU-3(1) AU-4 AU-4(1) AU-5 AU-5(2) AU-5(5) AU-6(1) AU-6(4) AU-8 AU-9 AU-9(2) AU-9(3) CA-7(6) CM-11(3) CP-10 CP-10(4) IR-4 IR-4(11) IR-4(12) IR-4(14) IR-4(5) IR-5 IR-5(1) PL-8 PL-8(1) RA-10 RA-3(4) RA-3(4) SA-8(21) SA-8(22) SA-8(23) SC-16(2) SC-32(1) SC-5 SC-5(3) SC-7(10) SC-7(9) SI-10(6) SI-16 SI-17 SI-3 SI-3(10) SI-3(8) SI-4 SI-4(1) SI-4(10) SI-4(11) SI-4(13) SI-4(13) SI-4(16) SI-4(17) SI-4(2) SI-4(23) SI-4(24) SI-4(25) SI-4(4) SI-4(5) SI-4(7) SI-6 SI-7(17) SI-7(8) | D3-FA D3-DA D3-FCR D3-FH D3-ID D3-IRA D3-HD D3-IAA D3-FHRA D3-NTA D3-PMAD D3-RTSD D3-ANAA D3-CA D3-CSPP D3-ISVA D3-PM D3-SDM D3-SFA D3-SFV D3-SICA D3-USICA D3-FBA D3-FEMC D3-FV D3-OSM D3-PFV D3-EHB D3-IDA D3-MBT D3-SBV D3-PA D3-PSMD D3-PSA D3-SEA D3-SSC D3-SCA D3-FAPA D3-IBCA D3-PCSV D3-FCA D3-PLA D3-UBA D3-RAPA D3-SDA D3-UDTA D3-UGLPA D3-ANET D3-AZET D3-JFAPA D3-LAM D3-NI D3-RRID D3-NTF D3-ITF D3-OTF D3-EI D3-EAL D3-EDL D3-HBPI D3-IOPR D3-KBPI D3-MAC D3-SCF | A.8.15 A.8.15 A.8.6 A.8.17 A.5.33 A.8.15 A.8.15 A.5.29 A.5.25 A.5.26 A.5.27 A.5.8 A.5.7 A.8.12 A.8.7 A.8.16 A.8.16 A.8.16 A.8.16 | |
CM0067 | Smart Contracts | Smart contracts can be used to mitigate harm when an attacker is attempting to compromise a hosted payload. Smart contracts will stipulate security protocol required across a bus and should it be violated, the violator will be barred from exchanges across the system after consensus achieved across the network. | IA-9 SI-4 SI-4(2) | D3-AM D3-PH D3-LFP D3-SCP | A.8.16 | |
CM0037 | Disable Physical Ports | Provide the capability for data connection ports or input/output devices (e.g., JTAG) to be disabled or removed prior to spacecraft operations. | AC-14 MA-7 PL-8 PL-8(1) SA-3 SA-4(5) SA-4(9) SA-8 SC-41 SC-7(14) | D3-EI D3-IOPR | A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 | |
CM0065 | OSAM Dual Authorization | Before engaging in an On-orbit Servicing, Assembly, and Manufacturing (OSAM) mission, verification of servicer should be multi-factor authenticated/authorized by both the serviced ground station and the serviced asset. | CA-3(6) IA-2(1) IA-2(2) IA-2(6) | D3-OAM D3-AM D3-ODM D3-OM D3-MFA | None | |
CM0029 | TRANSEC | Utilize TRANSEC in order to prevent interception, disruption of reception, communications deception, and/or derivation of intelligence by analysis of transmission characteristics such as signal parameters or message externals. For example, jam-resistant waveforms can be utilized to improve the resistance of radio frequency signals to jamming and spoofing. Note: TRANSEC is that field of COMSEC which deals with the security of communication transmissions, rather than that of the information being communicated. | AC-17 AC-18 AC-18(5) CA-3 CP-8 PL-8 PL-8(1) SA-8(19) SC-16 SC-16(1) SC-40 SC-40 SC-40(1) SC-40(1) SC-40(3) SC-40(3) SC-40(4) SC-40(4) SC-5 SC-8(1) SC-8(3) SC-8(4) | D3-MH D3-MAN D3-MENCR D3-NTA D3-DNSTA D3-ISVA D3-NTCD D3-RTA D3-PMAD D3-FC D3-CSPP D3-ANAA D3-RPA D3-IPCTA D3-NTCD D3-NTPM D3-TAAN | A.5.14 A.6.7 A.8.1 A.5.14 A.8.1 A.8.20 A.5.14 A.8.21 A.5.29 A.7.11 A.5.8 A.5.33 |