REC-0001 |
Gather Spacecraft Design Information |
Threat actors may gather information about the victim spacecraft's design that can be used for future campaigns or to help perpetuate other techniques. Information about the spacecraft can include software, firmware, encryption type, purpose, as well as various makes and models of subsystems. |
|
REC-0001.01 |
Software Design |
Threat actors may gather information about the victim spacecraft's internal software that can be used for future campaigns or to help perpetuate other techniques. Information (e.g. source code, binaries, etc.) about commercial, open-source, or custom developed software may include a variety of details such as types, versions, and memory maps. Leveraging this information threat actors may target vendors of operating systems, flight software, or open-source communities to embed backdoors or for performing reverse engineering research to support offensive cyber operations. |
|
REC-0001.02 |
Firmware |
Threat actors may gather information about the victim spacecraft's firmware that can be used for future campaigns or to help perpetuate other techniques. Information about the firmware may include a variety of details such as type and versions on specific devices, which may be used to infer more information (ex. configuration, purpose, age/patch level, etc.). Leveraging this information threat actors may target firmware vendors to embed backdoors or for performing reverse engineering research to support offensive cyber operations. |
|
REC-0001.03 |
Cryptographic Algorithms |
Threat actors may gather information about any cryptographic algorithms used on the victim spacecraft's that can be used for future campaigns or to help perpetuate other techniques. Information about the algorithms can include type and private keys. Threat actors may also obtain the authentication scheme (i.e., key/password/counter values) and leverage it to establish communications for commanding the target spacecraft or any of its subsystems. Some spacecraft only require authentication vice authentication and encryption, therefore once obtained, threat actors may use any number of means to command the spacecraft without needing to go through a legitimate channel. The authentication information may be obtained through reconnaissance of the ground system or retrieved from the victim spacecraft. |
|
REC-0001.04 |
Data Bus |
Threat actors may gather information about the data bus used within the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information about the data bus can include the make and model which could lead to more information (ex. protocol, purpose, controller, etc.), as well as locations/addresses of major subsystems residing on the bus.
Threat actors may also gather information about the bus voltages of the victim spacecraft. This information can include optimal power levels, connectors, range, and transfer rate. |
|
REC-0001.05 |
Thermal Control System |
Threat actors may gather information about the thermal control system used with the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information gathered can include type, make/model, and varies analysis programs that monitor it. |
|
REC-0001.06 |
Maneuver & Control |
Threat actors may gather information about the station-keeping control systems within the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information gathered can include thruster types, propulsion types, attitude sensors, and data flows associated with the relevant subsystems. |
|
REC-0001.07 |
Payload |
Threat actors may gather information about the type(s) of payloads hosted on the victim spacecraft. This information could include specific commands, make and model, and relevant software. Threat actors may also gather information about the location of the payload on the bus and internal routing as it pertains to commands within the payload itself. |
|
REC-0001.08 |
Power |
Threat actors may gather information about the power system used within the victim spacecraft. This information can include type, power intake, and internal algorithms. Threat actors may also gather information about the solar panel configurations such as positioning, automated tasks, and layout. Additionally, threat actors may gather information about the batteries used within the victim spacecraft. This information can include the type, quantity, storage capacity, make and model, and location. |
|
REC-0001.09 |
Fault Management |
Threat actors may gather information about any fault management that may be present on the victim spacecraft. This information can help threat actors construct specific attacks that may put the spacecraft into a fault condition and potentially a more vulnerable state depending on the fault response. |
REC-0002 |
Gather Spacecraft Descriptors |
Threat actors may gather information about the victim spacecraft's descriptors that can be used for future campaigns or to help perpetuate other techniques. Information about the descriptors may include a variety of details such as identity attributes, organizational structures, and mission operational parameters. |
|
REC-0002.01 |
Identifiers |
Threat actors may gather information about the victim spacecraft's identity attributes that can be used for future campaigns or to help perpetuate other techniques. Information may include a variety of details such as the satellite catalog number, international designator, mission name, and more. |
|
REC-0002.02 |
Organization |
Threat actors may gather information about the victim spacecraft's associated organization(s) that can be used for future campaigns or to help perpetuate other techniques. Collection efforts may target the mission owner/operator in order to conduct further attacks against the organization, individual, or other interested parties. Threat actors may also seek information regarding the spacecraft's designer/builder, including physical locations, key employees, and roles and responsibilities as they pertain to the spacecraft, as well as information pertaining to the mission's end users/customers. |
|
REC-0002.03 |
Operations |
Threat actors may gather information about the victim spacecraft's operations that can be used for future campaigns or to help perpetuate other techniques. Collection efforts may target mission objectives, orbital parameters such as orbit slot and inclination, user guides and schedules, etc. Additionally, threat actors may seek information about constellation deployments and configurations where applicable. |
REC-0003 |
Gather Spacecraft Communications Information |
Threat actors may obtain information on the victim spacecraft's communication channels in order to determine specific commands, protocols, and types. Information gathered can include commanding patterns, antenna shape and location, beacon frequency and polarization, and various transponder information. |
|
REC-0003.01 |
Communications Equipment |
Threat actors may gather information regarding the communications equipment and its configuration that will be used for communicating with the victim spacecraft. This includes:
Antenna Shape: This information can help determine the range in which it can communicate, the power of it's transmission, and the receiving patterns.
Antenna Configuration/Location: This information can include positioning, transmission frequency, wavelength, and timing.
Telemetry Signal Type: Information can include timing, radio frequency wavelengths, and other information that can provide insight into the spacecraft's telemetry system.
Beacon Frequency: This information can provide insight into where the spacecrafts located, what it's orbit is, and how long it can take to communicate with a ground station.
Beacon Polarization: This information can help triangulate the spacecrafts it orbits the earth and determine how a satellite must be oriented in order to communicate with the victim spacecraft.
Transponder: This could include the number of transponders per band, transponder translation factor, transponder mappings, power utilization, and/or saturation point. |
|
REC-0003.02 |
Commanding Details |
Threat actors may gather information regarding the commanding approach that will be used for communicating with the victim spacecraft. This includes:
Commanding Signal Type: This can include timing, radio frequency wavelengths, and other information that can provide insight into the spacecraft's commanding system.
Valid Commanding Patterns: Most commonly, this comes in the form of a command database, but can also include other means that provide information on valid commands and the communication protocols used by the victim spacecraft.
Valid Commanding Periods: This information can provide insight into when a command will be accepted by the spacecraft and help the threat actor construct a viable attack campaign. |
|
REC-0003.03 |
Mission-Specific Channel Scanning |
Threat actors may seek knowledge about mission-specific communication channels dedicated to a payload. Such channels could be managed by a different organization than the owner of the spacecraft itself. |
|
REC-0003.04 |
Valid Credentials |
Threat actors may seek out valid credentials which can be utilized to facilitate several tactics throughout an attack. Credentials may include, but are not limited to: system service accounts, user accounts, maintenance accounts, cryptographic keys and other authentication mechanisms. |
REC-0004 |
Gather Launch Information |
Threat actors may gather the launch date and time, location of the launch (country & specific site), organizations involved, launch vehicle, etc. This information can provide insight into protocols, regulations, and provide further targets for the threat actor, including specific vulnerabilities with the launch vehicle itself. |
|
REC-0004.01 |
Flight Termination |
Threat actor may obtain information regarding the vehicle's flight termination system. Threat actors may use this information to perform later attacks and target the vehicle's termination system to have desired impact on mission. |
REC-0006 |
Gather FSW Development Information |
Threat actors may obtain information regarding the flight software (FSW) development environment for the victim spacecraft. This information may include the development environment, source code, compiled binaries, testing tools, and fault management. |
|
REC-0006.01 |
Development Environment |
Threat actors may gather information regarding the development environment for the victim spacecraft's FSW. This information can include IDEs, configurations, source code, environment variables, source code repositories, code "secrets", and compiled binaries. |
|
REC-0006.02 |
Security Testing Tools |
Threat actors may gather information regarding how a victim spacecraft is tested in regards to the FSW. Understanding the testing approach including tools could identify gaps and vulnerabilities that could be discovered and exploited by a threat actor. |
REC-0007 |
Monitor for Safe-Mode Indicators |
Threat actors may gather information regarding safe-mode indicators on the victim spacecraft. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time. |
REC-0008 |
Gather Supply Chain Information |
Threat actors may gather information about a mission's supply chain or product delivery mechanisms that can be used for future campaigns or to help perpetuate other techniques. |
|
REC-0008.01 |
Hardware Recon |
Threat actors may gather information that can be used to facilitate a future attack where they manipulate hardware components in the victim spacecraft prior to the customer receiving them in order to achieve data or system compromise. The threat actor can insert backdoors and give them a high level of control over the system when they modify the hardware or firmware in the supply chain. This would include ASIC and FPGA devices as well. |
|
REC-0008.02 |
Software Recon |
Threat actors may gather information relating to the mission's software supply chain in order to facilitate future attacks to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one. |
|
REC-0008.04 |
Business Relationships |
Adversaries may gather information about the victim's business relationships that can be used during targeting. Information about an mission’s business relationships may include a variety of details, including second or third-party organizations/domains (ex: managed service providers, contractors/sub-contractors, etc.) that have connected (and potentially elevated) network access or sensitive information. This information may also reveal supply chains and shipment paths for the victim’s hardware and software resources. |
REC-0009 |
Gather Mission Information |
Threat actors may initially seek to gain an understanding of a target mission by gathering information commonly captured in a Concept of Operations (or similar) document and related artifacts. Information of interest includes, but is not limited to:
- the needs, goals, and objectives of the system
- system overview and key elements/instruments
- modes of operations (including operational constraints)
- proposed capabilities and the underlying science/technology used to provide capabilities (i.e., scientific papers, research studies, etc.)
- physical and support environments |
IA-0001 |
Compromise Supply Chain |
Threat actors may manipulate or compromise products or product delivery mechanisms before the customer receives them in order to achieve data or system compromise. |
|
IA-0001.01 |
Software Dependencies & Development Tools |
Threat actors may manipulate software dependencies (i.e. dependency confusion) and/or development tools prior to the customer receiving them in order to achieve data or system compromise. Software binaries and applications often depend on external software to function properly. spacecraft developers may use open source projects to help with their creation. These open source projects may be targeted by threat actors as a way to add malicious code to the victim spacecraft's dependencies. |
|
IA-0001.02 |
Software Supply Chain |
Threat actors may manipulate software binaries and applications prior to the customer receiving them in order to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one. |
IA-0007 |
Compromise Ground System |
Threat actors may initially compromise the ground system in order to access the target spacecraft. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes. Threat actors may also perform further reconnaissance within the system to enumerate mission networks and gather information related to ground station logical topology, missions ran out of said ground station, birds that are in-band of targeted ground stations, and other mission system capabilities. |
|
IA-0007.01 |
Compromise On-Orbit Update |
Threat actors may manipulate and modify on-orbit updates before they are sent to the target spacecraft. This attack can be done in a number of ways, including manipulation of source code, manipulating environment variables, on-board table/memory values, or replacing compiled versions with a malicious one. |
PER-0002 |
Backdoor |
Threat actors may find and target various backdoors, or inject their own, within the victim spacecraft in the hopes of maintaining their attack. |
|
PER-0002.02 |
Software Backdoor |
Threat actors may inject code to create their own backdoor to establish persistent access to the spacecraft. This may be done through modification of code throughout the software supply chain or through modification of the software-defined radio configuration (if applicable). |
PER-0005 |
Credentialed Persistence |
Threat actors may acquire or leverage valid credentials to maintain persistent access to a spacecraft or its supporting command and control (C2) systems. These credentials may include system service accounts, user accounts, maintenance access credentials, cryptographic keys, or other authentication mechanisms that enable continued entry without triggering access alarms. By operating with legitimate credentials, adversaries can sustain access over extended periods, evade detection, and facilitate follow-on tactics such as command execution, data exfiltration, or lateral movement. Credentialed persistence is particularly effective in environments lacking strong credential lifecycle management, segmentation, or monitoring allowing threat actors to exploit trusted pathways while remaining embedded in mission operations. |
DE-0009 |
Camouflage, Concealment, and Decoys (CCD) |
This technique deals with the more physical aspects of CCD that may be utilized by threat actors. There are numerous ways a threat actor may utilize the physical operating environment to their advantage, including powering down and laying dormant within debris fields as well as launching EMI attacks during space-weather events. |
|
DE-0009.05 |
Corruption or Overload of Ground-Based SDA Systems |
Threat actors may target the ground-based systems and data pipelines that support Space Domain Awareness (SDA), either by corrupting key data sources, manipulating tracking information, or overloading the ingestion architecture. The objective is to blind or confuse decision-makers and automated systems responsible for monitoring and responding to on-orbit activity. This includes compromising or spoofing telemetry, TLEs, sensor feeds, radar/optical returns, or orbital prediction services used by tracking centers. It also includes the enumeration and exploitation of analytic infrastructures, such as AI/ML-enhanced SDA platforms. In cases where SDA systems leverage AI/ML inference for object detection and decision support, attackers may seek to degrade model performance by flooding the data pipeline with misleading, noisy, adversarial, or low-quality sensor inputs. These disruptions aim to delay detection of threats, generate false positives, or cause resource exhaustion in SDA fusion and alerting systems. This sub-technique differs from onboard deception (e.g., sensor spoofing) by targeting the terrestrial decision support infrastructure, potentially affecting multiple spacecraft or operators simultaneously. |
DE-0011 |
Credentialed Evasion |
Threat actors may leverage valid credentials to conduct unauthorized actions against a spacecraft or related system in a way that conceals their presence and evades detection. By using trusted authentication mechanisms attackers can blend in with legitimate operations and avoid triggering access control alarms or anomaly detection systems. This technique enables evasion by appearing authorized, allowing adversaries to issue commands, access sensitive subsystems, or move laterally within spacecraft or constellation architectures without exploiting software vulnerabilities. When credential use is poorly segmented or monitored, this form of access can be used to maintain stealthy persistence or facilitate other tactics under the guise of legitimate activity. |
LM-0007 |
Credentialed Traversal |
Threat actors may leverage valid credentials to traverse across spacecraft subsystems, communication buses, or even to access other spacecraft within a constellation, all while avoiding detection. These credentials may include system service accounts, user accounts, maintenance credentials, cryptographic keys, or other authentication mechanisms that grant authorized access. Rather than exploiting vulnerabilities, this technique relies on the reuse or misuse of trusted credentials to move laterally within the space system architecture. When access control boundaries are weak, flat, or poorly enforced, valid credentials can enable attackers to reach restricted functions or domains without raising alarms. This traversal allows evasion of isolation mechanisms and facilitates further actions without triggering traditional anomaly detection tied to unauthorized access attempts. |
EXF-0007 |
Compromised Ground System |
Threat actors may compromise target owned ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration. |
EXF-0008 |
Compromised Developer Site |
Threat actors may compromise development environments located within the ground system or a developer/partner site. This attack can take place in a number of different ways, including manipulation of source code, manipulating environment variables, or replacing compiled versions with a malicious one. This technique is usually performed before the target spacecraft is in orbit, with the hopes of adding malicious code to the actual FSW during the development process. |
EXF-0009 |
Compromised Partner Site |
Threat actors may compromise access to partner sites that can be used for future campaigns or to perpetuate other techniques. These sites are typically configured for communications to the primary ground station(s) or in some cases the spacecraft itself. Unlike mission operated ground systems, partner sites may provide an easier target for threat actors depending on the company, roles and responsibilities, and interests of the third-party. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration. |