Implement an insider threat program that includes a cross-discipline insider threat incident handling team.
ID: PM-12
Enhancements:
Space Segment Guidance
An insider threat program is crucial even for unmanned spacecraft operations, as the most significant risk often emerges from individuals who already possess privileged knowledge about cryptographic keys, firmware, or ground-segment command interfaces. Insider threats may arise from disgruntled employees, supply chain partners, or even well-intentioned personnel unaware that their actions jeopardize sensitive data. A formal program addresses these risks via policies for access control (e.g., the principle of least privilege), strict change management of flight software, and translates those controls into technical implementation onboard the spacecraft. Monitoring anomalous download logs or suspicious sequences of commands—particularly during integration and testing—can expose possible malicious insiders before launch. By instituting a comprehensive insider threat program, organizations can maintain better oversight of critical processes, reduce the likelihood of sabotage, and safeguard mission success despite the inherent complexities of space system design and operation.
Establish policy and procedures to prevent individuals (i.e., insiders) from masquerading as individuals with valid access to areas where commanding of the spacecraft is possible. Establish an Insider Threat Program to aid in the prevention of people with authorized access performing malicious activities.
Masquerading as an authorized entity in order to gain access/Insider Threat
Sample Requirements
Requirement
Rationale/Additional Guidance/Notes
The [organization] shall have an Insider Threat Program to aid in the detection and prevention of people with authorized access to perform malicious activities.{AT-2(2),IR-4(6),IR-4(7),PM-12,PM-16}
The [organization] shall establish a cross-discipline insider threat incident response & handling team.{PM-12}
The [organization] shall establish policy and procedures to prevent unauthorized personnel from masquerading as personnel with valid access to areas where commanding of the spacecraft is possible.{PM-12}
The [organization] shall have Insider Threat Program to aid in the prevention of people with authorized access to perform malicious activities.{SV-AC-4}{PM-12,AT-2(2),IR-4(7)}
Note: These are not spacecraft requirements but important to call out but likely are covered under other requirements by the customer.
The intent is for multiple checks to be performed prior to executing these SV SW updates. One action is mere act of uploading the SW to the spacecraft. Another action could be check of digital signature (ideal but not explicitly required) or hash or CRC or a checksum. Crypto boxes provide another level of authentication for all commands, including SW updates but ideally there is another factor outside of crypto to protect against FSW updates. Multi-factor authorization could be the "two-man rule" where procedures are in place to prevent a successful attack by a single actor (note: development activities that are subsequently subject to review or verification activities may already require collaborating attackers such that a "two-man rule" is not appropriate).
Threat actors may initially compromise the ground system in order to access the target spacecraft. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes. Threat actors may also perform further reconnaissance within the system to enumerate mission networks and gather information related to ground station logical topology, missions ran out of said ground station, birds that are in-band of targeted ground stations, and other mission system capabilities.
Threat actors may manipulate and modify on-orbit updates before they are sent to the target spacecraft. This attack can be done in a number of ways, including manipulation of source code, manipulating environment variables, on-board table/memory values, or replacing compiled versions with a malicious one.
Threat actors may compromise target owned ground systems components (e.g., front end processors, command and control software, etc.) that can be used for future campaigns or to perpetuate other techniques. These ground systems components have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
Threat actors may target the spacecraft hardware and/or software while the spacecraft is at Assembly, Test, and Launch Operation (ATLO). ATLO is often the first time pieces of the spacecraft are fully integrated and exchanging data across interfaces. Malware could propagate from infected devices across the integrated spacecraft. For example, test equipment (i.e., transient cyber asset) is often brought in for testing elements of the spacecraft. Additionally, varying levels of physical security is in place which may be a reduction in physical security typically seen during development. The ATLO environment should be considered a viable attack vector and the appropriate/equivalent security controls from the primary development environment should be implemented during ATLO as well.
Threat actors may gain access to a victim spacecraft by masquerading as an authorized entity. This can be done several ways, including through the manipulation of command headers, spoofing locations, or even leveraging Insider's access (i.e., Insider Threat)
Threat actors may compromise access to partner sites that can be used for future campaigns or to perpetuate other techniques. These sites are typically configured for communications to the primary ground station(s) or in some cases the spacecraft itself. Unlike mission operated ground systems, partner sites may provide an easier target for threat actors depending on the company, roles and responsibilities, and interests of the third-party. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.