The [organization] shall define processes and procedures to be followed when integrity verification tools detect unauthorized changes to software, firmware, and information.{SV-IT-2}{CM-3,CM-3(1),CM-3(5),CM-5(6),CM-6,CP-2,IR-6,IR-6(2),PM-30,SC-16(1),SC-51,SI-3,SI-4(7),SI-4(24),SI-7,SI-7(7),SI-7(10)}
|
|
The [spacecraft] shall monitor and collect all onboard cyber-relevant data (from multiple system components), including identification of potential attacks and sufficient information about the attack for subsequent analysis.{SV-DCO-1}{AC-6(9),AC-20,AC-20(1),AU-2,AU-12,IR-4,IR-4(1),RA-10,SI-3,SI-3(10),SI-4,SI-4(1),SI-4(2),SI-4(7),SI-4(24)}
|
The spacecraft will monitor and collect data that provides accountability of activity occurring onboard the spacecraft. Due to resource limitations on the spacecraft, analysis must be performed to determine which data is critical for retention and which can be filtered. Full system coverage of data and actions is desired as an objective; it will likely be impractical due to the resource limitations. “Cyber-relevant data” refers to all data and actions deemed necessary to support accountability and awareness of onboard cyber activities for the mission. This would include data that may indicate abnormal activities, critical configuration parameters, transmissions on onboard networks, command logging, or other such data items. This set of data items should be identified early in the system requirements and design phase. Cyber-relevant data should support the ability to assess whether abnormal events are unintended anomalies or actual cyber threats. Actual cyber threats may rarely or never occur, but non-threat anomalies occur regularly. The ability to filter out cyber threats for non-cyber threats in relevant time would provide a needed capability. Examples could include successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels).
|
The [spacecraft] shall generate cyber-relevant audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, and the outcome of the event.{SV-DCO-1}{AU-3,AU-3(1),AU-12,IR-4,IR-4(1),RA-10,SI-3,SI-3(10),SI-4(7),SI-4(24)}
|
|
The [spacecraft] shall attribute cyber attacks and identify unauthorized use of the platform by downlinking onboard cyber information to the mission ground station within 3 minutes. {AU-4(1),IR-4,IR-4(1),IR-4(12),IR-4(13),RA-10,SA-8(22),SI-3,SI-3(10),SI-4(5),SI-4(7),SI-4(12),SI-4(24)}
|
|
The [spacecraft] shall alert in the event of the audit/logging processing failures.{AU-5,AU-5(1),AU-5(2),SI-3,SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(24)}
|
|
The [spacecraft] shall provide an alert immediately to [at a minimum the mission director, administrators, and security officers] when the following failure events occur: [minimally but not limited to: auditing software/hardware errors; failures in the audit capturing mechanisms; and audit storage capacity reaching 95%, 99%, and 100%] of allocated capacity.{SV-DCO-1}{AU-5,AU-5(1),AU-5(2),SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(24),SI-7(7)}
|
Intent is to have human on the ground be alerted to failures. This can be decomposed to SV to generate telemetry and to Ground to alert.
|
The [spacecraft] shall provide the capability of a cyber “black-box” to capture necessary data for cyber forensics of threat signatures and anomaly resolution when cyber attacks are detected.{SV-DCO-1}{AU-5(5),AU-9(2),AU-9(3),AU-12,IR-4(12),IR-4(13),IR-5(1),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(7),SI-4(24),SI-7(7)}
|
Similar concept of a "black box" on an aircraft where all critical information is stored for post forensic analysis. Black box can be used to record CPU utilization, GNC physical parameters, audit records, memory contents, TT&C data points, etc. The timeframe is dependent upon implementation but needs to meet the intent of the requirement. For example, 30 days may suffice.
|
The [spacecraft] shall provide automated onboard mechanisms that integrate audit review, analysis, and reporting processes to support mission processes for investigation and response to suspicious activities to determine the attack class in the event of a cyber attack.{SV-DCO-1}{AU-6(1),IR-4,IR-4(1),IR-4(12),IR-4(13),PM-16(1),RA-10,SA-8(21),SA-8(22),SC-5(3),SI-3,SI-3(10),SI-4(7),SI-4(24),SI-7(7)}
|
* Identifying the class (e.g., exfiltration, Trojans, etc.), nature, or effect of cyberattack (e.g., exfiltration, subverted control, or mission interruption) is necessary to determine the type of response. The first order of identification may be to determine whether the event is an attack or a non-threat event (anomaly). The objective requirement would be to predict the impact of the detected signature.
* Unexpected conditions can include RF lockups, loss of lock, failure to acquire an expected contact and unexpected reports of acquisition, unusual AGC and ACS control excursions, unforeseen actuator enabling's or actions, thermal stresses, power aberrations, failure to authenticate, software or counter resets, etc. Mitigation might include additional TMONs, more detailed AGC and PLL thresholds to alert operators, auto-capturing state snapshot images in memory when unexpected conditions occur, signal spectra measurements, and expanded default diagnostic telemetry modes to help in identifying and resolving anomalous conditions.
|
The [spacecraft] shall integrate cyber related detection and responses with existing fault management capabilities to ensure tight integration between traditional fault management and cyber intrusion detection and prevention.{SV-DCO-1}{AU-6(4),IR-4,IR-4(1),RA-10,SA-8(21),SA-8(26),SC-3(4),SI-3,SI-3(10),SI-4(7),SI-4(13),SI-4(16),SI-4(24),SI-4(25),SI-7(7),SI-13}
|
The onboard IPS system should be integrated into the existing onboard spacecraft fault management system (FMS) because the FMS has its own fault detection and response system built in. SV corrective behavior is usually limited to automated fault responses and ground commanded recovery actions. Intrusion prevention and response methods will inform resilient cybersecurity design. These methods enable detected threat activity to trigger defensive responses and resilient SV recovery.
|
The [spacecraft] shall protect information obtained from logging/intrusion-monitoring from unauthorized access, modification, and deletion.{SV-DCO-1}{AU-9,AU-9(3),RA-10,SI-4(7),SI-4(24)}
|
|
The [organization] shall employ automated tools that provide notification to ground operators upon discovering discrepancies during integrity verification.{CM-3(5),CM-6,IR-6,IR-6(2),SA-8(21),SC-51,SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(2)}
|
|
The [spacecraft] shall provide automatic notification to ground operators upon discovering discrepancies during integrity verification.{SV-IT-2}{CM-3(5),SA-8(21),SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(2)}
|
|
The [spacecraft], upon detection of a potential integrity violation, shall provide the capability to [audit the event and alert ground operators].{SV-DCO-1}{CM-3(5),SA-8(21),SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(8)}
|
One example would be for bad commands where the system would reject the command and not increment the Vehicle Command Counter (VCC) and include the information in telemetry.
|
The [spacecraft] shall enter a cyber-safe mode when conditions that threaten the platform are detected, enters a cyber-safe mode of operation with restrictions as defined based on the cyber-safe mode.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4,IR-4(1),IR-4(3),PE-10,RA-10,SA-8(16),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-13,SI-17}
|
|
The [organization] shall define the security safeguards that are to be automatically employed when integrity violations are discovered.{SV-IT-2}{CP-2,SA-8(21),SI-3,SI-4(7),SI-4(12),SI-7(5),SI-7(8)}
|
|
The [spacecraft] shall be able to locate the onboard origin of a cyber attack and alert ground operators within 3 minutes.{SV-DCO-1}{IR-4,IR-4(1),IR-4(12),IR-4(13),RA-10,SA-8(22),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(16),SI-4(24)}
|
The origin of any attack onboard the vehicle should be identifiable to support mitigation. At the very least, attacks from critical element (safety-critical or higher-attack surface) components should be locatable quickly so that timely action can occur.
|
The [spacecraft] shall detect and deny unauthorized outgoing communications posing a threat to the spacecraft.{SV-DCO-1}{IR-4,IR-4(1),RA-5(4),RA-10,SC-7(9),SC-7(10),SI-4,SI-4(1),SI-4(4),SI-4(7),SI-4(11),SI-4(13),SI-4(24),SI-4(25)}
|
|
The [spacecraft] shall recover to a known cyber-safe state when an anomaly is detected.{IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-10(6),SI-13,SI-17}
|
|
The [spacecraft] shall detect and recover from detected memory errors or transitions to a known cyber-safe state.{IR-4,IR-4(1),SA-8(16),SA-8(24),SI-3,SI-4(7),SI-10(6),SI-13,SI-17}
|
|
The [spacecraft] shall select and execute safe countermeasures against cyber attacks prior to entering cyber-safe mode.{SV-DCO-1}{IR-4,RA-10,SA-8(21),SA-8(24),SI-4(7),SI-17}
|
These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker exquisitely—with or without ground aiding. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system." These countermeasures are likely executed prior to entering into a cyber-safe mode.
|
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
|
The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management.
|