SC-40(1) - Wireless Link Protection | Electromagnetic Interference

Implement cryptographic mechanisms that achieve [Assignment: organization-defined level of protection] against the effects of intentional electromagnetic interference.


Informational References

ISO 27001

ID: SC-40(1)
Enhancement of : SC-40

Countermeasures Covered by Control

ID Name Description D3FEND
CM0029 TRANSEC Utilize TRANSEC to secure data transmissions from being infiltrated, exploited, or intercepted.

Space Threats Tagged by Control

ID Description
SV-IT-1 Communications system spoofing resulting in denial of service and loss of availability and data integrity
SV-AV-1 Communications system jamming resulting in denial of service and loss of availability and data integrity

Sample Requirements

Requirement Rationale/Additional Guidance/Notes
The [spacecraft] shall use [directional or beamforming] antennas in normal ops to reduce the likelihood that unintended receivers will be able to intercept signals.{SV-AV-1}{AC-18(5)}
The [spacecraft] shall implement cryptographic mechanisms to identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters.{SV-AV-1,SV-IT-1}{AC-3,AC-20,SA-8(19),SC-8(1),SC-23(3),SC-40(3),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
The [spacecraft] shall incorporate backup sources for navigation and timing.{SV-IT-1}{AU-8(1),SC-45(1),SC-45(2)}
The [spacecraft] shall have fault-tolerant authoritative time sourcing for the platform's clock.{SV-IT-1}{AU-8(2),SC-45,SC-45(1),SC-45(2),SI-13} * Adopt voting schemes (triple modular redundancy) that include inputs from backup sources. Consider providing a second reference frame against which short-term changes or interferences can be compared. * Atomic clocks, crystal oscillators and/or GPS receivers are often used as time sources. GPS should not be used as the only source due to spoofing/jamming concerns.
The [spacecraft] shall have multiple uplink paths {SV-AV-1}{CP-8,CP-11,SA-8(18),SC-5,SC-47}
The [spacecraft] shall utilize TRANSEC.{SV-AV-1}{CP-8,RA-5(4),SA-8(18),SA-8(19),SC-8(1),SC-8(4),SC-16,SC-16(1),SC-16(2),SC-16(3),SC-40(4)} Transmission Security (TRANSEC) is used to ensure the availability of transmissions and limit intelligence collection from the transmissions. TRANSEC is secured through burst encoding, frequency hopping, or spread spectrum methods where the required pseudorandom sequence generation is controlled by a cryptographic algorithm and key. Such keys are known as transmission security keys (TSK). The objectives of transmission security are low probability of interception (LPI), low probability of detection (LPD), and antijam which means resistance to jamming (EPM or ECCM).
The [spacecraft] shall maintain the ability to establish communication with the spacecraft in the event of an anomaly to the primary receive path.{SV-AV-1,SV-IT-1}{CP-8,SA-8(18),SC-47} Receiver communication can be established after an anomaly with such capabilities as multiple receive apertures, redundant paths within receivers, redundant receivers, omni apertures, fallback default command modes, and lower bit rates for contingency commanding, as examples
The [spacecraft] shall implement cryptographic mechanisms that achieve adequate protection against the effects of intentional electromagnetic interference.{SV-AV-1,SV-IT-1}{SA-8(19),SC-8(1),SC-40,SC-40(1)}
The [spacecraft] shall internally monitor GPS performance so that changes or interruptions in the navigation or timing are flagged.{SV-IT-1}{SC-45(1)}
The [spacecraft] shall implement protections against external and internal communications from jamming attempts.{SC-5,SC-40,SC-40(1)}
The [spacecraft] shall protect external and internal communications from jamming and spoofing attempts.{SV-AV-1,SV-IT-1}{SC-5,SC-40,SC-40(1)} Can be aided via the Crosslink, S-Band, and L-Band subsystems

Related SPARTA Techniques and Sub-Techniques

ID Name Description
REC-0005 Eavesdropping Threat actors may seek to capture network communications throughout the ground station and radio frequency (RF) communication used for uplink and downlink communications. RF communication frequencies vary between 30MHz and 60 GHz. Threat actors may capture RF communications using specialized hardware, such as software defined radio (SDR), handheld radio, or a computer with radio demodulator turned to the communication frequency. Network communications may be captured using packet capture software while the threat actor is on the target network.
REC-0005.01 Uplink Intercept Threat actors may capture the RF communications as it pertains to the uplink to the victim SV. This information can contain commanding information that the threat actor can use to perform other attacks against the victim SV.
REC-0005.02 Downlink Intercept Threat actors may capture the RF communications as it pertains to the downlink of the victim SV. This information can contain important telemetry such as onboard status and mission data.
REC-0005.03 Proximity Operations Threat actors may capture signals and/or network communications as they travel on-board the vehicle (i.e., EMSEC/TEMPEST), via RF, or terrestrial networks. This information can be decoded to determine commanding and telemetry protocols, command times, and other information that could be used for future attacks.
IA-0003 Crosslink via Compromised Neighbor Threat actors may compromise a victim SV via the crosslink communications of a neighboring SV that has been compromised. SVs in close proximity are able to send commands back and forth. Threat actors may be able to leverage this access to compromise other SVs once they have access to another that is nearby.
IA-0008 Rogue External Entity Threat actors may gain access to a victim SV through the use of a rogue external entity. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.01 Rogue Ground Station Threat actors may gain access to a victim SV through the use of a rogue ground system. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.02 Rogue Spacecraft Threat actors may gain access to a target SV using their own SV that has the capability to maneuver within close proximity to a target SV to carry out a variety of TTPs (i.e., eavesdropping, side-channel, etc.). Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference.
IA-0010 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim SV being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the SV are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
EX-0001 Replay Replay attacks involve threat actors recording previously data streams and then resending them at a later time. This attack can be used to fingerprint systems, gain elevated privileges, or even cause a denial of service.
EX-0001.01 Command Packets Threat actors may interact with the victim SV by replaying captured commands to the SV. While not necessarily malicious in nature, replayed commands can be used to overload the target SV and cause it's onboard systems to crash, perform a DoS attack, or monitor various responses by the SV. If critical commands are captured and replayed, thruster fires, then the impact could impact the SV's attitude control/orbit.
EX-0011 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim SV being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the SV are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
EXF-0001 Replay Threat actors may exfiltrate data by replaying commands and capturing the telemetry or payload data as it is sent down. One scenario would be the threat actor replays commands to downlink payload data once SV is within certain location so the data can be intercepted on the downlink by threat actor ground terminals.
EXF-0003 Eavesdropping Threat actors may seek to capture network communications throughout the ground station and communication channel (i.e. radio frequency, optical) used for uplink and downlink communications
EXF-0003.01 Uplink Intercept Threat actors may target the uplink connection from the victim ground infrastructure to the target SV in order to exfiltrate commanding data. Depending on the implementation (i.e., encryption) the captured uplink data can be used to further other attacks like command link intrusion, replay, etc.
EXF-0003.02 Downlink Intercept Threat actors may target the downlink connection from the victim SV in order to exfiltrate telemetry or payload data. This data can include health information of the SV or whatever mission data that is being collected/analyzed on the SV.
EXF-0004 Out-of-Band Communications Link Threat actors may attempt to exfiltrate data via the out-of-band communication channels. While performing eavesdropping on the primary/second uplinks and downlinks is a method for exfiltration, some space vehicles leverage out-of-band communication links to perform actions on the space vehicle (i.e., re-keying). These out-of-band links would occur on completely different channels/frequencies and often operate on separate hardware on the space vehicle. Typically these out-of-band links have limited built-for-purpose functionality and likely do not present an initial access vector but they do provide ample exfiltration opportunity.
DE-0002 Prevent Downlink Threat actors may target the downlink connections to prevent the victim SV from sending telemetry to the ground controllers. Telemetry is the only method in which ground controllers can monitor the health and stability of the SV while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0002.02 Jam Link Signal Threat actors may overwhelm/jam the downlink signal to prevent transmitted telemetry signals from reaching their destination without severe modification/interference, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the SV while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0005 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim SV being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the SV are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections (i.e. security features) may be disabled at this time which would ensure the threat actor achieves evasion.
LM-0003 Constellation Hopping via Crosslink Threat actors may attempt to command another neighboring spacecraft via crosslink. SVs in close proximity are often able to send commands back and forth. Threat actors may be able to leverage this access to compromise another SV.