Replacing old software on a computer system component.
ID | Name | Description | NIST Rev5 | D3FEND | ISO 27001 | |
CM0010 | Update Software | Perform regular software updates to mitigate exploitation risk. Software updates may need to be scheduled around operational down times. Release updated versions of the software/firmware systems incorporating security-relevant updates, after suitable regression testing, at a frequency no greater than mission-defined frequency [i.e., 30 days]. Ideally old versions of software are removed after upgrading but restoration states (i.e., gold images) are recommended to remain on the system. | CM-3(2) CM-3(7) CM-3(8) CM-4 CM-4(1) CM-5(6) CM-7(5) SA-10(4) SA-11 SA-3 SA-8 SA-8(30) SA-8(31) SA-8(8) SA-9 SI-2 SI-2(6) SI-7 | D3-SU | A.8.9 A.8.9 A.8.9 A.8.31 A.8.19 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 A.6.8 A.8.8 A.8.32 |
ID | Name | Description | |
---|---|---|---|
IA-0001 | Compromise Supply Chain | Threat actors may manipulate or compromise products or product delivery mechanisms before the customer receives them in order to achieve data or system compromise. | |
IA-0001.01 | Software Dependencies & Development Tools | Threat actors may manipulate software dependencies (i.e. dependency confusion) and/or development tools prior to the customer receiving them in order to achieve data or system compromise. Software binaries and applications often depend on external software to function properly. spacecraft developers may use open source projects to help with their creation. These open source projects may be targeted by threat actors as a way to add malicious code to the victim spacecraft's dependencies. | |
IA-0001.02 | Software Supply Chain | Threat actors may manipulate software binaries and applications prior to the customer receiving them in order to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one. | |
IA-0002 | Compromise Software Defined Radio | Threat actors may target software defined radios due to their software nature to establish C2 channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert C2 channels for a threat actor. | |
EX-0009 | Exploit Code Flaws | Threats actors may identify and exploit flaws or weaknesses within the software running on-board the target spacecraft. These attacks may be extremely targeted and tailored to specific coding errors introduced as a result of poor coding practices or they may target known issues in the commercial software components. | |
EX-0009.02 | Operating System | Threat actors may exploit flaws in the operating system code, which controls the storage, memory management, provides resources to the FSW, and controls the bus. There has been a trend where some modern spacecraft are running Unix-based operating systems and establishing SSH connections for communications between the ground and spacecraft. Threat actors may seek to gain access to command line interfaces & shell environments in these instances. Additionally, most operating systems, including real-time operating systems, include API functionality for operator interaction. Threat actors may seek to exploit these or abuse a vulnerability/misconfiguration to maliciously execute code or commands. | |
EX-0009.03 | Known Vulnerability (COTS/FOSS) | Threat actors may utilize knowledge of the spacecraft software composition to enumerate and exploit known flaws or vulnerabilities in the commercial or open source software running on-board the target spacecraft. | |
PER-0002 | Backdoor | Threat actors may find and target various backdoors, or inject their own, within the victim spacecraft in the hopes of maintaining their attack. | |
PER-0002.02 | Software Backdoor | Threat actors may inject code to create their own backdoor to establish persistent access to the spacecraft. This may be done through modification of code throughout the software supply chain or through modification of the software-defined radio configuration (if applicable). | |
EXF-0006 | Modify Communications Configuration | Threat actors can manipulate communications equipment, modifying the existing software, hardware, or the transponder configuration to exfiltrate data via unintentional channels the mission has no control over. | |
EXF-0006.01 | Software Defined Radio | Threat actors may target software defined radios due to their software nature to setup exfiltration channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert exfiltration channels for a threat actor. | |
EXF-0006.02 | Transponder | Threat actors may change the transponder configuration to exfiltrate data via radio access to an attacker-controlled asset. |
ID | Description | |
SV-AC-3 |
Compromised master keys or any encryption key |
|
SV-CF-2 |
Eavesdropping (RF and proximity) |
|
SV-IT-2 |
Unauthorized modification or corruption of data |
|
SV-MA-2 |
Heaters and flow valves of the propulsion subsystem are controlled by electric signals so cyberattacks against these signals could cause propellant lines to freeze, lock valves, waste propellant or even put in de-orbit or unstable spinning |
|
SV-AV-4 |
Attacking the scheduling table to affect tasking |
|
SV-IT-5 |
Onboard control procedures (i.e., ATS/RTS) that execute a scripts/sets of commands |
|
SV-MA-3 |
Attacks on critical software subsystems Attitude Determination and Control (AD&C) subsystem determines and controls the orientation of the satellite. Any cyberattack that could disrupt some portion of the control loop - sensor data, computation of control commands, and receipt of the commands would impact operations Telemetry, Tracking and Commanding (TT&C) subsystem provides interface between satellite and ground system. Computations occur within the RF portion of the TT&C subsystem, presenting cyberattack vector Command and Data Handling (C&DH) subsystem is the brains of the satellite. It interfaces with other subsystems, the payload, and the ground. It receives, validate, decodes, and sends commands to other subsystems, and it receives, processes, formats, and routes data for both the ground and onboard computer. C&DH has the most cyber content and is likely the biggest target for cyberattack. Electrical Power Subsystem (EPS) provides, stores, distributes, and controls power on the satellite. An attack on EPS could disrupt, damage, or destroy the satellite. |
|
SV-SP-1 |
Exploitation of software vulnerabilities (bugs); Unsecure code, logic errors, etc. in the FSW. |
|
SV-SP-3 |
Introduction of malicious software such as a virus, worm, Distributed Denial-Of-Service (DDOS) agent, keylogger, rootkit, or Trojan Horse |
|
SV-SP-6 |
Software reuse, COTS dependence, and standardization of onboard systems using building block approach with addition of open-source technology leads to supply chain threat |
|
SV-SP-9 |
On-orbit software updates/upgrades/patches/direct memory writes. If TT&C is compromised or MOC or even the developer's environment, the risk exists to do a variation of a supply chain attack where after it is in orbit you inject malicious code |
|
SV-AC-5 |
Proximity operations (i.e., grappling satellite) |
|
SV-AC-6 |
Three main parts of S/C. CPU, memory, I/O interfaces with parallel and/or serial ports. These are connected via busses (i.e., 1553) and need segregated. Supply chain attack on CPU (FPGA/ASICs), supply chain attack to get malware burned into memory through the development process, and rogue RTs on 1553 bus via hosted payloads are all threats. Security or fault management being disabled by non-mission critical or payload; fault injection or MiTM into the 1553 Bus - China has developed fault injector for 1553 - this could be a hosted payload attack if payload has access to main 1553 bus; One piece of FSW affecting another. Things are not containerized from the OS or FSW perspective; |
|
SV-AC-8 |
Malicious Use of hardware commands - backdoors / critical commands |
|
SV-AV-2 |
Satellites base many operations on timing especially since many operations are automated. Cyberattack to disrupt timing/timers could affect the vehicle (Time Jamming / Time Spoofing) |
|
SV-AV-3 |
Affect the watchdog timer onboard the satellite which could force satellite into some sort of recovery mode/protocol |
|
SV-IT-3 |
Compromise boot memory |
|
SV-IT-4 |
Cause bit flip on memory via single event upsets |
|
SV-MA-8 |
Payload (or other component) is told to constantly sense or emit or run whatever mission it had to the point that it drained the battery constantly / operated in a loop at maximum power until the battery is depleted. |
|
SV-SP-11 |
Software defined radios - SDR is also another computer, networked to other parts of the spacecraft that could be pivoted to by an attacker and infected with malicious code. Once access to an SDR is gained, the attacker could alter what the SDR thinks is correct frequencies and settings to communicate with the ground. |
|
SV-SP-7 |
Software can be broken down into three levels (operating system and drivers’ layer, data handling service layer, and the application layer). Highest impact on system is likely the embedded code at the BIOS, kernel/firmware level. Attacking the on-board operating systems. Since it manages all the programs and applications on the computer, it has a critical role in the overall security of the system. Since threats may occur deliberately or due to human error, malicious programs or persons, or existing system vulnerability mitigations must be deployed to protect the OS. |
|
SV-AV-5 |
Using fault management system against you. Understanding the fault response could be leveraged to get satellite in vulnerable state. Example, safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of TLM to cause action from ground, or some sort of RPO to cause S/C to go into safe mode; |
|
SV-AV-6 |
Complete compromise or corruption of running state |
|
SV-DCO-1 |
Not knowing that you were attacked, or attack was attempted |
|
SV-MA-5 |
Not being able to recover from cyberattack |
|
SV-AC-1 |
Attempting access to an access-controlled system resulting in unauthorized access |
|
SV-AC-2 |
Replay of recorded authentic communications traffic at a later time with the hope that the authorized communications will provide data or some other system reaction |
|
SV-CF-1 |
Tapping of communications links (wireline, RF, network) resulting in loss of confidentiality; Traffic analysis to determine which entities are communicating with each other without being able to read the communicated information |
|
SV-CF-4 |
Adversary monitors for safe-mode indicators such that they know when satellite is in weakened state and then they launch attack |
|
SV-IT-1 |
Communications system spoofing resulting in denial of service and loss of availability and data integrity |
|
SV-AC-7 |
Weak communication protocols. Ones that don't have strong encryption within it |
|
SV-AV-1 |
Communications system jamming resulting in denial of service and loss of availability and data integrity |
|
SV-MA-7 |
Exploit ground system and use to maliciously to interact with the spacecraft |
|
SV-AC-4 |
Masquerading as an authorized entity in order to gain access/Insider Threat |
|
SV-AV-7 |
The TT&C is the lead contributor to satellite failure over the first 10 years on-orbit, around 20% of the time. The failures due to gyro are around 12% between year one and 6 on-orbit and then ramp up starting around year six and overtake the contributions of the TT&C subsystem to satellite failure. Need to ensure equipment is not counterfeit and the supply chain is sound. |
|
SV-CF-3 |
Knowledge of target satellite's cyber-related design details would be crucial to inform potential attacker - so threat is leaking of design data which is often stored Unclass or on contractors’ network |
|
SV-MA-4 |
Not knowing what your crown jewels are and how to protect them now and in the future. |
|
SV-MA-6 |
Not planning for security on SV or designing in security from the beginning |
|
SV-SP-10 |
Compromise development environment source code (applicable to development environments not covered by threat SV-SP-1, SV-SP-3, and SV-SP-4). |
|
SV-SP-2 |
Testing only focuses on functional requirements and rarely considers end to end or abuse cases |
|
SV-SP-4 |
General supply chain interruption or manipulation |
|
SV-SP-5 |
Hardware failure (i.e., tainted hardware) {ASIC and FPGA focused} |
Requirement | Rationale/Additional Guidance/Notes |
---|---|
The [organization] shall identify the applicable physical and environmental protection policies covering the development environment and spacecraft hardware. {PE-1,PE-14,SA-3,SA-3(1),SA-10(3)} | |
The [organization] shall analyze changes to the spacecraft to determine potential security impacts prior to change implementation.{CM-4,CM-3,CM-3(2),CM-3(7),CM-4(2),SA-10} | |
The [organization] shall develop and document program-specific identification and authentication policies for accessing the development environment and spacecraft. {AC-3,AC-14,IA-1,SA-3,SA-3(1)} | |
The [organization] shall protect documentation and Controlled Unclassified Information (CUI) as required, in accordance with the risk management strategy.{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-10,SC-8(1),SC-28(3),SI-12} | |
The [organization] shall identify and properly classify mission sensitive design/operations information and access control shall be applied in accordance with classification guides and applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{SV-CF-3,SV-AV-5}{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-8(19),SC-8(1),SC-28(3),SI-12} | * Mission sensitive information should be classified as Controlled Unclassified Information (CUI) or formally known as Sensitive but Unclassified. Ideally these artifacts would be rated SECRET or higher and stored on classified networks. Mission sensitive information can typically include a wide range of candidate material: the functional and performance specifications, the RF ICDs, databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, SBU, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission. |
The [organization] shall ensure security requirements/configurations are placed in accordance with NIST 800-171 with enhancements in 800-172 on the development environments to prevent the compromise of source code from supply chain or information leakage perspective.{AC-3,SA-3,SA-3(1),SA-15} | |
The [organization] shall ensure any update to on-board software, memory, or stored procedures has met high assurance standards before execution. {AC-3(2),CM-3,SA-8(8),SA-8(31),SA-10(2),SR-4(4)} | |
The [organization] shall employ independent third-party analysis and penetration testing of all software (COTS, FOSS, Custom) associated with the system, system components, or system services.{CA-2,CA-2(1),CA-8(1),CM-10(1),SA-9,SA-11(3),SA-12(11),SI-3,SI-3(10),SR-4(4),SR-6(1)} | |
In coordination with [organization], the [organization] shall prioritize and remediate flaws identified during security testing/evaluation.{CA-2,CA-5,SA-11,SI-3,SI-3(10)} | |
The [organization] shall implement a verifiable flaw remediation process into the developmental and operational configuration management process.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-5,SA-3,SA-3(1),SA-11,SI-3,SI-3(10)} | The verifiable process should also include a cross reference to mission objectives and impact statements. Understanding the flaws discovered and how they correlate to mission objectives will aid in prioritization. |
The [organization] shall maintain evidence of the execution of the security assessment plan and the results of the security testing/evaluation.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11} | |
The [organization] shall create and implement a security assessment plan that includes: (1) The types of analyses, testing, evaluation, and reviews of all software and firmware components; (2) The degree of rigor to be applied to include abuse cases and/or penetration testing; and (3) The types of artifacts produced during those processes.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11,SA-11(5)} | The security assessment plan should include evaluation of mission objectives in relation to the security of the mission. Assessments should not only be control based but also functional based to ensure mission is resilient against failures of controls. |
The [organization] shall establish robust procedures and technical methods to perform testing to include adversarial testing (i.e.abuse cases) of the platform hardware and software.{CA-8,CP-4(5),RA-5,RA-5(1),RA-5(2),SA-3,SA-4(3),SA-11,SA-11(1),SA-11(2),SA-11(5),SA-11(7),SA-11(8),SA-15(7)} | |
The [organization] shall perform penetration testing/analysis: (1) On potential system elements before accepting the system; (2) As a realistic simulation of the active adversary’s known adversary tactics, techniques, procedures (TTPs), and tools; and (3) Throughout the lifecycle on physical and logical systems, elements, and processes.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CA-8(1),SA-9,SA-11(5),SR-5(2)} | Penetration testing should be performed throughout the lifecycle on physical and logical systems, elements, and processes including: (1) Hardware, software, and firmware development processes; (2) Shipping/handling procedures; (3) Personnel and physical security programs; (4) Configuration management tools/measures to maintain provenance; and (5) Any other programs, processes, or procedures associated with the production/distribution of supply chain elements. |
The [organization] shall develop and document program-specific configuration management policies and procedures for the hardware and software for the spacecraft. {CM-1,CM-3,CM-5(6),SA-10,SA-10(3)} | |
The [organization] shall confirm that the operational spacecrafts correspond to the baseline configuration. {CM-2,CM-3,CM-3(7),CM-4(2),CM-6,SA-10} | |
The [organization] shall develop, document, and maintain under configuration control, a current baseline configuration of the spacecrafts.{CM-2,CM-3(7),CM-4(2),CM-6,SA-8(30),SA-10} | |
The [organization] shall retain at least two previous versions of all spacecraft associated software on the ground with the capability to restore previous version on the spacecraft.{CM-2(3),CM-3(7),CM-4(2),SA-10,SA-10(4)} | |
The [organization] shall test software and firmware updates related to flaw remediation for effectiveness and potential side effects on mission systems in a separate test environment before installation.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-3,CM-3(1),CM-3(2),CM-4(1),CM-4(2),CM-10(1),SA-8(31),SA-11(9),SI-2,SI-3,SI-3(10),SI-7(10),SI-7(12),SR-5(2)} | This requirement is focused on software and firmware flaws. If hardware flaw remediation is required, refine the requirement to make this clear. |
The [organization] shall define processes and procedures to be followed when integrity verification tools detect unauthorized changes to software, firmware, and information.{SV-IT-2}{CM-3,CM-3(1),CM-3(5),CM-5(6),CM-6,CP-2,IR-6,IR-6(2),PM-30,SC-16(1),SC-51,SI-3,SI-4(7),SI-4(24),SI-7,SI-7(7),SI-7(10)} | |
The [organization] shall release updated versions of the mission information systems incorporating security-relevant software and firmware updates, after suitable regression testing, at a frequency no greater than [Program-defined frequency [90 days]].{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-3(2),CM-4(1)} | On-orbit patching/upgrades may be necessary if vulnerabilities are discovered after launch. The system should have the ability to update software post-launch. |
The [organization] shall implement a two-person rule, or similar dual authorization mechanism, for all changes to the SV configuration, and such actions should only be conducted with documented change control board approval.{CM-3(8)} | |
The [organization] shall develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including support tamper resistance and provide a level of protection against the introduction of malicious code or hardware.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CM-3(8),CM-7(9),PM-30,SA-8(9),SA-8(11),SA-9,SA-10(3),SA-19,SC-51,SR-4(3),SR-4(4),SR-5(2),SR-11} | |
The [organization] shall develop and document spacecraft integrity policies covering both hardware and software. {CM-5(6),SA-10(3),SI-1,SI-7(12)} | |
The [organization] shall maintain the integrity of the mapping between the master build data (hardware drawings and software/firmware code) describing the current version of hardware, software, and firmware and the on-site master copy of the data for the current version.{CM-6,SA-8(21),SA-8(30),SA-10,SA-10(3),SA-10(4),SA-10(5),SI-7(10),SR-4(4)} | |
The [organization] shall define/maintain an approved operating system list for use on spacecraft.{SV-SP-7}{CM-7(5)} | The operating system is extremely important to security and availability of the spacecraft, therefore should receive high levels of assurance that it operates as intended and free of critical weaknesses/vulnerabilities. |
The [organization] shall employ techniques to limit harm from potential adversaries identifying and targeting the [organization]s supply chain.{CP-2,PM-30,SA-9,SA-12(5),SC-38,SR-3,SR-3(1),SR-3(2),SR-5(2)} | |
The [organization] shall report identified systems or system components containing software affected by recently announced cybersecurity-related software flaws (and potential vulnerabilities resulting from those flaws) to [organization] officials with cybersecurity responsibilities.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-11}{IR-6,IR-6(2),SI-2,SI-3,SI-4(12),SR-4(4)} | |
The [organization] shall develop a security plan for the spacecraft.{SV-MA-6}{PL-2,PL-7,PM-1,SA-8(29),SA-8(30)} | |
The [organization] shall document the platform's security architecture, and how it is established within and is an integrated part of the overall [organization] mission security architecture.{PL-7,SA-8(7),SA-8(13),SA-8(29),SA-8(30),SA-17} | |
The [organization] shall use all-source intelligence analysis of suppliers and potential suppliers of the information system, system components, or system services to inform engineering, acquisition, and risk management decisions.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{PM-16,PM-30,RA-2,RA-3(1),RA-3(2),RA-7,SA-9,SA-12(8),SR-5(2)} | * The Program should also consider sub suppliers and potential sub suppliers. * All-source intelligence of suppliers that the organization may use includes: (1) Defense Intelligence Agency (DIA) Threat Assessment Center (TAC), the enterprise focal point for supplier threat assessments for the DOD acquisition community risks; (2) Other U.S. Government resources including: (a) Government Industry Data Exchange Program (GIDEP) – Database where government and industry can record issues with suppliers, including counterfeits; and (b) System for Award Management (SAM) – Database of companies that are barred from doing business with the US Government. |
The [organization] shall request threat analysis of suppliers of critical components and manage access to and control of threat analysis products containing U.S.person information.{SV-SP-3,SV-SP-4,SV-SP-11}{PM-16,PM-30(1),RA-3(1),SA-9,SA-12,SR-1} | The intent of this requirement is to address supply chain concerns on hardware and software vendors. Not required for trusted suppliers accredited to the Defense Microelectronic Activity (DMEA). If the Program intends to use a supplier not accredited by DMEA, the government customer should be notified as soon as possible. If the Program has internal processes to vet suppliers, it may meet this requirement. All software used and its origins must be included in the SBOM and be subjected to internal and Government vulnerability scans. |
The [organization] shall conduct a supplier review prior to entering into a contractual agreement with a sub [organization] to acquire systems, system components, or system services.{PM-30,PM-30(1),RA-3(1),SA-8(9),SA-8(11),SA-9,SA-12(2),SR-5(2),SR-6} | |
The [organization] shall perform static binary analysis of all firmware that is utilized on the spacecraft.{SV-SP-7,SV-SP-11}{RA-5,SA-10,SA-11,SI-7(10)} | Many commercial products/parts are utilized within the system and should be analyzed for security weaknesses. Blindly accepting the firmware is free of weakness is unacceptable for high assurance missions. The intent is to not blindly accept firmware from unknown sources and assume it is secure. This is meant to apply to firmware the vendors are not developing internally. In-house developed firmware should be going through the vendor's own testing program and have high assurance it is secure. When utilizing firmware from other sources, "expecting" does not meet this requirement. Each supplier needs to provide evidence to support that claim that their firmware they are getting is genuine and secure. |
The [organization] shall review proposed changes to the spacecraft, assessing both mission and security impacts.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-10,CM-3(2)} | |
The [organization] shall correct flaws identified during security testing/evaluation.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11} | Flaws that impact the mission objectives should be prioritized. |
The [organization] shall perform [Selection (one or more): unit; integration; system; regression] testing/evaluation at [Program-defined depth and coverage].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11} | The depth needs to include functional testing as well as negative/abuse testing. |
The [organization] shall require subcontractors developing information system components or providing information system services (as appropriate) to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} | Select the particular subcontractors, software vendors, and manufacturers based on the criticality analysis performed for the Program Protection Plan and the criticality of the components that they supply. |
The [organization] shall correct reported cybersecurity-related information system flaws.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SI-2} | * Although this requirement is stated to specifically apply to cybersecurity-related flaws, the Program office may choose to broaden it to all SV flaws. * This requirement is allocated to the Program, as it is presumed, they have the greatest knowledge of the components of the system and when identified flaws apply. |
The [organization] shall identify, report, and coordinate correction of cybersecurity-related information system flaws.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SI-2} | |
The [organization] shall enable integrity verification of software and firmware components.{SV-IT-2}{CM-3(5),CM-5(6),CM-10(1),SA-8(9),SA-8(11),SA-8(21),SA-10(1),SI-3,SI-4(24),SI-7,SI-7(10),SI-7(12),SR-4(4)} | * The integrity verification mechanisms may include: ** Stipulating and monitoring logical delivery of products and services, requiring downloading from approved, verification-enhanced sites; ** Encrypting elements (software, software patches, etc.) and supply chain process data in transit (motion) and at rest throughout delivery; ** Requiring suppliers to provide their elements “secure by default”, so that additional configuration is required to make the element insecure; ** Implementing software designs using programming languages and tools that reduce the likelihood of weaknesses; ** Implementing cryptographic hash verification; and ** Establishing performance and sub-element baseline for the system and system elements to help detect unauthorized tampering/modification during repairs/refurbishing. ** Stipulating and monitoring logical delivery of products and services, requiring downloading from approved, verification-enhanced sites; ** Encrypting elements (software, software patches, etc.) and supply chain process data in transit (motion) and at rest throughout delivery; ** Requiring suppliers to provide their elements “secure by default”, so that additional configuration is required to make the element insecure; ** Implementing software designs using programming languages and tools that reduce the likelihood of weaknesses; ** Implementing cryptographic hash verification; and ** Establishing performance and sub-element baseline for the system and system elements to help detect unauthorized tampering/modification during repairs/refurbishing. |
For FPGA pre-silicon artifacts that are developed, coded, and tested by a developer that is not accredited, the [organization] shall be subjected to a development environment and pre-silicon artifacts risk assessment by [organization]. Based on the results of the risk assessment, the [organization] may need to implement protective measures or other processes to ensure the integrity of the FPGA pre-silicon artifacts.{SV-SP-5}{SA-3,SA-3(1),SA-8(9),SA-8(11),SA-12,SA-12(1),SR-1,SR-5} | DOD-I-5200.44 requires the following: 4.c.2 “Control the quality, configuration, and security of software, firmware, hardware, and systems throughout their lifecycles... Employ protections that manage risk in the supply chain… (e.g., integrated circuits, field-programmable gate arrays (FPGA), printed circuit boards) when they are identifiable (to the supplier) as having a DOD end-use. “ 4.e “In applicable systems, integrated circuit-related products and services shall be procured from a Trusted supplier accredited by the Defense Microelectronics Activity (DMEA) when they are custom-designed, custommanufactured, or tailored for a specific DOD military end use (generally referred to as application-specific integrated circuits (ASIC)). “ 1.g “In coordination with the DOD CIO, the Director, Defense Intelligence Agency (DIA), and the Heads of the DOD Components, develop a strategy for managing risk in the supply chain for integrated circuit-related products and services (e.g., FPGAs, printed circuit boards) that are identifiable to the supplier as specifically created or modified for DOD (e.g., military temperature range, radiation hardened). |
The [organization] shall require the developer of the system, system component, or system services to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} | Examples of good security practices would be using defense-in-depth tactics across the board, least-privilege being implemented, two factor authentication everywhere possible, using DevSecOps, implementing and validating adherence to secure coding standards, performing static code analysis, component/origin analysis for open source, fuzzing/dynamic analysis with abuse cases, etc. |
The [spacecraft] shall employ the principle of least privilege, allowing only authorized accesses processes which are necessary to accomplish assigned tasks in accordance with system functions.{SV-AC-6}{AC-3,AC-6,AC-6(9),CA-9,CM-5,CM-5(5),CM-5(6),SA-8(2),SA-8(5),SA-8(6),SA-8(14),SA-8(23),SA-17(7),SC-2,SC-7(29),SC-32,SC-32(1),SI-3} | |
The [spacecraft] shall require multi-factor authorization for all spacecraft [applications or operating systems] updates within the spacecraft.{SV-SP-9,SV-SP-11}{AC-3(2),CM-3(8),CM-5,PM-12,SA-8(8),SA-8(31),SA-10(2),SI-3(8),SI-7(12),SI-10(6)} | The intent is for multiple checks to be performed prior to executing these SV SW updates. One action is mere act of uploading the SW to the spacecraft. Another action could be check of digital signature (ideal but not explicitly required) or hash or CRC or a checksum. Crypto boxes provide another level of authentication for all commands, including SW updates but ideally there is another factor outside of crypto to protect against FSW updates. Multi-factor authorization could be the "two-man rule" where procedures are in place to prevent a successful attack by a single actor (note: development activities that are subsequently subject to review or verification activities may already require collaborating attackers such that a "two-man rule" is not appropriate). |
The [organization] shall document and design a security architecture using a defense-in-depth approach that allocates the [organization]s defined safeguards to the indicated locations and layers: [Examples include: operating system abstractions and hardware mechanisms to the separate processors in the platform, internal components, and the FSW].{SV-MA-6}{CA-9,PL-7,PL-8,PL-8(1),SA-8(3),SA-8(4),SA-8(7),SA-8(9),SA-8(11),SA-8(13),SA-8(19),SA-8(29),SA-8(30)} | |
The [spacecraft] shall use automated mechanisms to maintain and validate baseline configuration to ensure the [spacecraft] is up-to-date, complete, accurate, and readily available.{SV-SP-3}{CM-2(2),CM-3(5),CM-3(7),CM-6,SA-8(8)} | This could be command trigger from Ground or elsewhere. The point here is that the self-test is executed onboard the spacecraft via onboard HW/SW self-test mechanisms and its result is reported to the Ground |
The [spacecraft] shall prevent the installation of Flight Software without verification that the component has been digitally signed using a certificate that is recognized and approved by the ground.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-9}{CM-3,CM-3(8),CM-5,CM-5(3),CM-14,SA-8(8),SA-8(31),SA-10(2),SI-3,SI-7(12),SI-7(15)} | |
The [spacecraft] shall execute procedures for ensuring that security-relevant hardware, software, and firmware updates uploaded are exactly as specified by the gold copies. {CM-3(5),SA-8(8),SA-8(21),SA-8(31),SA-10(3),SA-10(4),SA-10(6),SI-7(10),SI-7(12)} | |
The [organization] shall ensure that software planned for reuse meets the fit, form, and function, and security as a component within the new application.{SV-SP-6,SV-SP-7,SV-SP-11}{CM-7(5)} | |
The [spacecraft] operating system, if COTS or FOSS, shall be selected from a [organization]-defined acceptance list.{SV-SP-7}{CM-7(8),CM-7(5)} | |
The [organization] shall implement a security architecture and design that provides the required security functionality, allocates security controls among physical and logical components, and integrates individual security functions, mechanisms, and processes together to provide required security capabilities and a unified approach to protection.{SV-MA-6}{PL-7,SA-2,SA-8,SA-8(1),SA-8(2),SA-8(3),SA-8(4),SA-8(5),SA-8(6),SA-8(7),SA-8(9),SA-8(11),SA-8(13),SA-8(19),SA-8(29),SA-8(30),SC-32,SC-32(1)} | |
The [spacecraft] shall retain the capability to update/upgrade operating systems while on-orbit.{SV-SP-7}{SA-4(5),SA-8(8),SA-8(31),SA-10(2),SI-3} | The operating system updates should be performed using multi-factor authorization and should only be performed when risk of compromise/exploitation of identified vulnerability outweighs the risk of not performing the update. |
The [spacecraft] shall be capable of removing flight software after updated versions have been installed.{SV-SP-1,SV-SP-9}{SA-8(8),SI-2(6)} |