REC-0003 |
Gather Spacecraft Communications Information |
Threat actors may obtain information on the victim spacecraft's communication channels in order to determine specific commands, protocols, and types. Information gathered can include commanding patterns, antenna shape and location, beacon frequency and polarization, and various transponder information. |
|
REC-0003.04 |
Valid Credentials |
Threat actors may seek out valid credentials which can be utilized to facilitate several tactics throughout an attack. Credentials may include, but are not limited to: system service accounts, user accounts, maintenance accounts, cryptographic keys and other authentication mechanisms. |
IA-0009 |
Trusted Relationship |
Access through trusted third-party relationship exploits an existing connection that has been approved for interconnection. Leveraging third party / approved interconnections to pivot into the target systems is a common technique for threat actors as these interconnections typically lack stringent access control due to the trusted status. |
|
IA-0009.01 |
Mission Collaborator (academia, international, etc.) |
Threat actors may seek to exploit mission partners to gain an initial foothold for pivoting into the mission environment and eventually impacting the spacecraft. The complex nature of many space systems rely on contributions across organizations, including academic partners and even international collaborators. These organizations will undoubtedly vary in their system security posture and attack surface. |
|
IA-0009.02 |
Vendor |
Threat actors may target the trust between vendors and the target spacecraft. Missions often grant elevated access to vendors in order to allow them to manage internal systems as well as cloud-based environments. The vendor's access may be intended to be limited to the infrastructure being maintained but it may provide laterally movement into the target spacecraft. Attackers may leverage security weaknesses in the vendor environment to gain access to more critical mission resources or network locations. In the spacecraft context vendors may have direct commanding and updating capabilities outside of the primary communication channel. |
|
IA-0009.03 |
User Segment |
Threat actors can target the user segment in an effort to laterally move into other areas of the end-to-end mission architecture. When user segments are interconnected, threat actors can exploit lack of segmentation as the user segment's security undoubtedly varies in their system security posture and attack surface than the primary space mission. The user equipment and users themselves provide ample attack surface as the human element and their vulnerabilities (i.e., social engineering, phishing, iOT) are often the weakest security link and entry point into many systems. |
EX-0003 |
Modify Authentication Process |
Threat actors may modify the internal authentication process of the victim spacecraft to facilitate initial access, recurring execution, or prevent authorized entities from accessing the spacecraft. This can be done through the modification of the software binaries or memory manipulation techniques. |
PER-0005 |
Credentialed Persistence |
Threat actors may acquire or leverage valid credentials to maintain persistent access to a spacecraft or its supporting command and control (C2) systems. These credentials may include system service accounts, user accounts, maintenance access credentials, cryptographic keys, or other authentication mechanisms that enable continued entry without triggering access alarms. By operating with legitimate credentials, adversaries can sustain access over extended periods, evade detection, and facilitate follow-on tactics such as command execution, data exfiltration, or lateral movement. Credentialed persistence is particularly effective in environments lacking strong credential lifecycle management, segmentation, or monitoring allowing threat actors to exploit trusted pathways while remaining embedded in mission operations. |
DE-0004 |
Masquerading |
Threat actors may gain access to a victim spacecraft by masquerading as an authorized entity. This can be done several ways, including through the manipulation of command headers, spoofing locations, or even leveraging Insider's access (i.e., Insider Threat) |
DE-0011 |
Credentialed Evasion |
Threat actors may leverage valid credentials to conduct unauthorized actions against a spacecraft or related system in a way that conceals their presence and evades detection. By using trusted authentication mechanisms attackers can blend in with legitimate operations and avoid triggering access control alarms or anomaly detection systems. This technique enables evasion by appearing authorized, allowing adversaries to issue commands, access sensitive subsystems, or move laterally within spacecraft or constellation architectures without exploiting software vulnerabilities. When credential use is poorly segmented or monitored, this form of access can be used to maintain stealthy persistence or facilitate other tactics under the guise of legitimate activity. |
LM-0007 |
Credentialed Traversal |
Threat actors may leverage valid credentials to traverse across spacecraft subsystems, communication buses, or even to access other spacecraft within a constellation, all while avoiding detection. These credentials may include system service accounts, user accounts, maintenance credentials, cryptographic keys, or other authentication mechanisms that grant authorized access. Rather than exploiting vulnerabilities, this technique relies on the reuse or misuse of trusted credentials to move laterally within the space system architecture. When access control boundaries are weak, flat, or poorly enforced, valid credentials can enable attackers to reach restricted functions or domains without raising alarms. This traversal allows evasion of isolation mechanisms and facilitates further actions without triggering traditional anomaly detection tied to unauthorized access attempts. |