Segment Address Offset Randomization

Randomizing the base (start) address of one or more segments of memory during the initialization of a process.

ID: D3-SAOR
Subclasses: 
Artifacts:  Process Segment
Tactic:

SPARTA Countermeasures Mapping

ID Name Description NIST Rev5 D3FEND ISO 27001
CM0001 Protect Sensitive Information Organizations should look to identify and properly classify mission sensitive design/operations information (e.g., fault management approach) and apply access control accordingly. Any location (ground system, contractor networks, etc.) storing design information needs to ensure design info is protected from exposure, exfiltration, etc. Space system sensitive information may be classified as Controlled Unclassified Information (CUI) or Company Proprietary. Space system sensitive information can typically include a wide range of candidate material: the functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, CUI, proprietary, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission. Sensitive documentation should only be accessed by personnel with defined roles and a need to know. Well established access controls (roles, encryption at rest and transit, etc.) and data loss prevention (DLP) technology are key countermeasures. The DLP should be configured for the specific data types in question. AC-25 AC-3(11) AC-4(23) AC-4(25) AC-4(6) CA-3 CM-12 CM-12(1) PL-8 PL-8(1) PM-11 PM-17 SA-3 SA-3(1) SA-3(2) SA-4(12) SA-5 SA-8 SA-8(19) SA-9(7) SC-16 SC-16(1) SC-8(1) SC-8(3) SI-12 SI-21 SI-23 SR-12 SR-7 D3-AI D3-AVE D3-NVA D3-CH D3-CBAN D3-CTS D3-PA D3-FAPA D3-SAOR A.8.4 A.8.11 A.8.10 A.5.14 A.8.21 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.33 7.5.1 7.5.2 7.5.3 A.5.37 A.8.27 A.8.28 A.5.33 A.8.10 A.5.22

Related SPARTA Techniques and Sub-Techniques

ID Name Description
REC-0001 Gather Spacecraft Design Information Threat actors may gather information about the victim spacecraft's design that can be used for future campaigns or to help perpetuate other techniques. Information about the spacecraft can include software, firmware, encryption type, purpose, as well as various makes and models of subsystems.
REC-0001.01 Software Design Threat actors may gather information about the victim spacecraft's internal software that can be used for future campaigns or to help perpetuate other techniques. Information (e.g. source code, binaries, etc.) about commercial, open-source, or custom developed software may include a variety of details such as types, versions, and memory maps. Leveraging this information threat actors may target vendors of operating systems, flight software, or open-source communities to embed backdoors or for performing reverse engineering research to support offensive cyber operations.
REC-0001.02 Firmware Threat actors may gather information about the victim spacecraft's firmware that can be used for future campaigns or to help perpetuate other techniques. Information about the firmware may include a variety of details such as type and versions on specific devices, which may be used to infer more information (ex. configuration, purpose, age/patch level, etc.). Leveraging this information threat actors may target firmware vendors to embed backdoors or for performing reverse engineering research to support offensive cyber operations.
REC-0001.03 Cryptographic Algorithms Threat actors may gather information about any cryptographic algorithms used on the victim spacecraft's that can be used for future campaigns or to help perpetuate other techniques. Information about the algorithms can include type and private keys. Threat actors may also obtain the authentication scheme (i.e., key/password/counter values) and leverage it to establish communications for commanding the target spacecraft or any of its subsystems. Some spacecraft only require authentication vice authentication and encryption, therefore once obtained, threat actors may use any number of means to command the spacecraft without needing to go through a legitimate channel. The authentication information may be obtained through reconnaissance of the ground system or retrieved from the victim spacecraft.
REC-0001.04 Data Bus Threat actors may gather information about the data bus used within the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information about the data bus can include the make and model which could lead to more information (ex. protocol, purpose, controller, etc.), as well as locations/addresses of major subsystems residing on the bus. Threat actors may also gather information about the bus voltages of the victim spacecraft. This information can include optimal power levels, connectors, range, and transfer rate.
REC-0001.05 Thermal Control System Threat actors may gather information about the thermal control system used with the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information gathered can include type, make/model, and varies analysis programs that monitor it.
REC-0001.06 Maneuver & Control Threat actors may gather information about the station-keeping control systems within the victim spacecraft that can be used for future campaigns or to help perpetuate other techniques. Information gathered can include thruster types, propulsion types, attitude sensors, and data flows associated with the relevant subsystems.
REC-0001.07 Payload Threat actors may gather information about the type(s) of payloads hosted on the victim spacecraft. This information could include specific commands, make and model, and relevant software. Threat actors may also gather information about the location of the payload on the bus and internal routing as it pertains to commands within the payload itself.
REC-0001.08 Power Threat actors may gather information about the power system used within the victim spacecraft. This information can include type, power intake, and internal algorithms. Threat actors may also gather information about the solar panel configurations such as positioning, automated tasks, and layout. Additionally, threat actors may gather information about the batteries used within the victim spacecraft. This information can include the type, quantity, storage capacity, make and model, and location.
REC-0001.09 Fault Management Threat actors may gather information about any fault management that may be present on the victim spacecraft. This information can help threat actors construct specific attacks that may put the spacecraft into a fault condition and potentially a more vulnerable state depending on the fault response.
REC-0002 Gather Spacecraft Descriptors Threat actors may gather information about the victim spacecraft's descriptors that can be used for future campaigns or to help perpetuate other techniques. Information about the descriptors may include a variety of details such as identity attributes, organizational structures, and mission operational parameters.
REC-0002.01 Identifiers Threat actors may gather information about the victim spacecraft's identity attributes that can be used for future campaigns or to help perpetuate other techniques. Information may include a variety of details such as the satellite catalog number, international designator, mission name, and more.
REC-0002.02 Organization Threat actors may gather information about the victim spacecraft's associated organization(s) that can be used for future campaigns or to help perpetuate other techniques. Collection efforts may target the mission owner/operator in order to conduct further attacks against the organization, individual, or other interested parties. Threat actors may also seek information regarding the spacecraft's designer/builder, including physical locations, key employees, and roles and responsibilities as they pertain to the spacecraft, as well as information pertaining to the mission's end users/customers.
REC-0002.03 Operations Threat actors may gather information about the victim spacecraft's operations that can be used for future campaigns or to help perpetuate other techniques. Collection efforts may target mission objectives, orbital parameters such as orbit slot and inclination, user guides and schedules, etc. Additionally, threat actors may seek information about constellation deployments and configurations where applicable.
REC-0003 Gather Spacecraft Communications Information Threat actors may obtain information on the victim spacecraft's communication channels in order to determine specific commands, protocols, and types. Information gathered can include commanding patterns, antenna shape and location, beacon frequency and polarization, and various transponder information.
REC-0003.01 Communications Equipment Threat actors may gather information regarding the communications equipment and its configuration that will be used for communicating with the victim spacecraft. This includes: Antenna Shape: This information can help determine the range in which it can communicate, the power of it's transmission, and the receiving patterns. Antenna Configuration/Location: This information can include positioning, transmission frequency, wavelength, and timing. Telemetry Signal Type: Information can include timing, radio frequency wavelengths, and other information that can provide insight into the spacecraft's telemetry system. Beacon Frequency: This information can provide insight into where the spacecrafts located, what it's orbit is, and how long it can take to communicate with a ground station. Beacon Polarization: This information can help triangulate the spacecrafts it orbits the earth and determine how a satellite must be oriented in order to communicate with the victim spacecraft. Transponder: This could include the number of transponders per band, transponder translation factor, transponder mappings, power utilization, and/or saturation point.
REC-0003.02 Commanding Details Threat actors may gather information regarding the commanding approach that will be used for communicating with the victim spacecraft. This includes: Commanding Signal Type: This can include timing, radio frequency wavelengths, and other information that can provide insight into the spacecraft's commanding system. Valid Commanding Patterns: Most commonly, this comes in the form of a command database, but can also include other means that provide information on valid commands and the communication protocols used by the victim spacecraft. Valid Commanding Periods: This information can provide insight into when a command will be accepted by the spacecraft and help the threat actor construct a viable attack campaign.
REC-0003.03 Mission-Specific Channel Scanning Threat actors may seek knowledge about mission-specific communication channels dedicated to a payload. Such channels could be managed by a different organization than the owner of the spacecraft itself.
REC-0003.04 Valid Credentials Threat actors may seek out valid credentials which can be utilized to facilitate several tactics throughout an attack. Credentials may include, but are not limited to: system service accounts, user accounts, maintenance accounts, cryptographic keys and other authentication mechanisms.
REC-0004 Gather Launch Information Threat actors may gather the launch date and time, location of the launch (country & specific site), organizations involved, launch vehicle, etc. This information can provide insight into protocols, regulations, and provide further targets for the threat actor, including specific vulnerabilities with the launch vehicle itself.
REC-0004.01 Flight Termination Threat actor may obtain information regarding the vehicle's flight termination system. Threat actors may use this information to perform later attacks and target the vehicle's termination system to have desired impact on mission.
REC-0006 Gather FSW Development Information Threat actors may obtain information regarding the flight software (FSW) development environment for the victim spacecraft. This information may include the development environment, source code, compiled binaries, testing tools, and fault management.
REC-0006.01 Development Environment Threat actors may gather information regarding the development environment for the victim spacecraft's FSW. This information can include IDEs, configurations, source code, environment variables, source code repositories, code "secrets", and compiled binaries.
REC-0006.02 Security Testing Tools Threat actors may gather information regarding how a victim spacecraft is tested in regards to the FSW. Understanding the testing approach including tools could identify gaps and vulnerabilities that could be discovered and exploited by a threat actor.
REC-0007 Monitor for Safe-Mode Indicators Threat actors may gather information regarding safe-mode indicators on the victim spacecraft. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
REC-0008 Gather Supply Chain Information Threat actors may gather information about a mission's supply chain or product delivery mechanisms that can be used for future campaigns or to help perpetuate other techniques.
REC-0008.01 Hardware Recon Threat actors may gather information that can be used to facilitate a future attack where they manipulate hardware components in the victim spacecraft prior to the customer receiving them in order to achieve data or system compromise. The threat actor can insert backdoors and give them a high level of control over the system when they modify the hardware or firmware in the supply chain. This would include ASIC and FPGA devices as well.
REC-0008.02 Software Recon Threat actors may gather information relating to the mission's software supply chain in order to facilitate future attacks to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one.
REC-0008.04 Business Relationships Adversaries may gather information about the victim's business relationships that can be used during targeting. Information about an mission’s business relationships may include a variety of details, including second or third-party organizations/domains (ex: managed service providers, contractors/sub-contractors, etc.) that have connected (and potentially elevated) network access or sensitive information. This information may also reveal supply chains and shipment paths for the victim’s hardware and software resources.
REC-0009 Gather Mission Information Threat actors may initially seek to gain an understanding of a target mission by gathering information commonly captured in a Concept of Operations (or similar) document and related artifacts. Information of interest includes, but is not limited to: - the needs, goals, and objectives of the system - system overview and key elements/instruments - modes of operations (including operational constraints) - proposed capabilities and the underlying science/technology used to provide capabilities (i.e., scientific papers, research studies, etc.) - physical and support environments
IA-0001 Compromise Supply Chain Threat actors may manipulate or compromise products or product delivery mechanisms before the customer receives them in order to achieve data or system compromise.
IA-0001.01 Software Dependencies & Development Tools Threat actors may manipulate software dependencies (i.e. dependency confusion) and/or development tools prior to the customer receiving them in order to achieve data or system compromise. Software binaries and applications often depend on external software to function properly. spacecraft developers may use open source projects to help with their creation. These open source projects may be targeted by threat actors as a way to add malicious code to the victim spacecraft's dependencies.
IA-0001.02 Software Supply Chain Threat actors may manipulate software binaries and applications prior to the customer receiving them in order to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one.
IA-0007 Compromise Ground System Threat actors may initially compromise the ground system in order to access the target spacecraft. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes. Threat actors may also perform further reconnaissance within the system to enumerate mission networks and gather information related to ground station logical topology, missions ran out of said ground station, birds that are in-band of targeted ground stations, and other mission system capabilities.
IA-0007.01 Compromise On-Orbit Update Threat actors may manipulate and modify on-orbit updates before they are sent to the target spacecraft. This attack can be done in a number of ways, including manipulation of source code, manipulating environment variables, on-board table/memory values, or replacing compiled versions with a malicious one.
PER-0002 Backdoor Threat actors may find and target various backdoors, or inject their own, within the victim spacecraft in the hopes of maintaining their attack.
PER-0002.02 Software Backdoor Threat actors may inject code to create their own backdoor to establish persistent access to the spacecraft. This may be done through modification of code throughout the software supply chain or through modification of the software-defined radio configuration (if applicable).
PER-0005 Credentialed Persistence Threat actors may acquire or leverage valid credentials to maintain persistent access to a spacecraft or its supporting command and control (C2) systems. These credentials may include system service accounts, user accounts, maintenance access credentials, cryptographic keys, or other authentication mechanisms that enable continued entry without triggering access alarms. By operating with legitimate credentials, adversaries can sustain access over extended periods, evade detection, and facilitate follow-on tactics such as command execution, data exfiltration, or lateral movement. Credentialed persistence is particularly effective in environments lacking strong credential lifecycle management, segmentation, or monitoring allowing threat actors to exploit trusted pathways while remaining embedded in mission operations.
DE-0009 Camouflage, Concealment, and Decoys (CCD) This technique deals with the more physical aspects of CCD that may be utilized by threat actors. There are numerous ways a threat actor may utilize the physical operating environment to their advantage, including powering down and laying dormant within debris fields as well as launching EMI attacks during space-weather events.
DE-0009.05 Corruption or Overload of Ground-Based SDA Systems Threat actors may target the ground-based systems and data pipelines that support Space Domain Awareness (SDA), either by corrupting key data sources, manipulating tracking information, or overloading the ingestion architecture. The objective is to blind or confuse decision-makers and automated systems responsible for monitoring and responding to on-orbit activity. This includes compromising or spoofing telemetry, TLEs, sensor feeds, radar/optical returns, or orbital prediction services used by tracking centers. It also includes the enumeration and exploitation of analytic infrastructures, such as AI/ML-enhanced SDA platforms. In cases where SDA systems leverage AI/ML inference for object detection and decision support, attackers may seek to degrade model performance by flooding the data pipeline with misleading, noisy, adversarial, or low-quality sensor inputs. These disruptions aim to delay detection of threats, generate false positives, or cause resource exhaustion in SDA fusion and alerting systems. This sub-technique differs from onboard deception (e.g., sensor spoofing) by targeting the terrestrial decision support infrastructure, potentially affecting multiple spacecraft or operators simultaneously.
DE-0011 Credentialed Evasion Threat actors may leverage valid credentials to conduct unauthorized actions against a spacecraft or related system in a way that conceals their presence and evades detection. By using trusted authentication mechanisms attackers can blend in with legitimate operations and avoid triggering access control alarms or anomaly detection systems. This technique enables evasion by appearing authorized, allowing adversaries to issue commands, access sensitive subsystems, or move laterally within spacecraft or constellation architectures without exploiting software vulnerabilities. When credential use is poorly segmented or monitored, this form of access can be used to maintain stealthy persistence or facilitate other tactics under the guise of legitimate activity.
LM-0007 Credentialed Traversal Threat actors may leverage valid credentials to traverse across spacecraft subsystems, communication buses, or even to access other spacecraft within a constellation, all while avoiding detection. These credentials may include system service accounts, user accounts, maintenance credentials, cryptographic keys, or other authentication mechanisms that grant authorized access. Rather than exploiting vulnerabilities, this technique relies on the reuse or misuse of trusted credentials to move laterally within the space system architecture. When access control boundaries are weak, flat, or poorly enforced, valid credentials can enable attackers to reach restricted functions or domains without raising alarms. This traversal allows evasion of isolation mechanisms and facilitates further actions without triggering traditional anomaly detection tied to unauthorized access attempts.
EXF-0007 Compromised Ground System Threat actors may compromise target owned ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
EXF-0008 Compromised Developer Site Threat actors may compromise development environments located within the ground system or a developer/partner site. This attack can take place in a number of different ways, including manipulation of source code, manipulating environment variables, or replacing compiled versions with a malicious one. This technique is usually performed before the target spacecraft is in orbit, with the hopes of adding malicious code to the actual FSW during the development process.
EXF-0009 Compromised Partner Site Threat actors may compromise access to partner sites that can be used for future campaigns or to perpetuate other techniques. These sites are typically configured for communications to the primary ground station(s) or in some cases the spacecraft itself. Unlike mission operated ground systems, partner sites may provide an easier target for threat actors depending on the company, roles and responsibilities, and interests of the third-party. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.

Space Threats Mapped

ID Description
SV-AC-3 Compromised master keys or any encryption key
SV-CF-2 Eavesdropping (RF and proximity)
SV-IT-2 Unauthorized modification or corruption of data
SV-MA-2 Heaters and flow valves of the propulsion subsystem are controlled by electric signals so cyberattacks against these signals could cause propellant lines to freeze, lock valves, waste propellant or even put in de-orbit or unstable spinning
SV-AV-4 Attacking the scheduling table to affect tasking
SV-IT-5 Onboard control procedures (i.e., ATS/RTS) that execute a scripts/sets of commands
SV-MA-3 Attacks on critical software subsystems
Attitude Determination and Control (AD&C) subsystem determines and controls the orientation of the satellite. Any cyberattack that could disrupt some portion of the control loop - sensor data, computation of control commands, and receipt of the commands would impact operations
Telemetry, Tracking and Commanding (TT&C) subsystem provides interface between satellite and ground system. Computations occur within the RF portion of the TT&C subsystem, presenting cyberattack vector
Command and Data Handling (C&DH) subsystem is the brains of the satellite. It interfaces with other subsystems, the payload, and the ground. It receives, validate, decodes, and sends commands to other subsystems, and it receives, processes, formats, and routes data for both the ground and onboard computer. C&DH has the most cyber content and is likely the biggest target for cyberattack.
Electrical Power Subsystem (EPS) provides, stores, distributes, and controls power on the satellite. An attack on EPS could disrupt, damage, or destroy the satellite.
SV-SP-1 Exploitation of software vulnerabilities (bugs); Unsecure code, logic errors, etc. in the FSW.
SV-SP-3 Introduction of malicious software such as a virus, worm, Distributed Denial-Of-Service (DDOS) agent, keylogger, rootkit, or Trojan Horse
SV-SP-6 Software reuse, COTS dependence, and standardization of onboard systems using building block approach with addition of open-source technology leads to supply chain threat
SV-SP-9 On-orbit software updates/upgrades/patches/direct memory writes. If TT&C is compromised or MOC or even the developer's environment, the risk exists to do a variation of a supply chain attack where after it is in orbit you inject malicious code
SV-AC-5 Proximity operations (i.e., grappling satellite)
SV-AC-6 Three main parts of S/C. CPU, memory, I/O interfaces with parallel and/or serial ports. These are connected via busses (i.e., 1553) and need segregated. Supply chain attack on CPU (FPGA/ASICs), supply chain attack to get malware burned into memory through the development process, and rogue RTs on 1553 bus via hosted payloads are all threats. Security or fault management being disabled by non-mission critical or payload; fault injection or MiTM into the 1553 Bus - China has developed fault injector for 1553 - this could be a hosted payload attack if payload has access to main 1553 bus; One piece of FSW affecting another. Things are not containerized from the OS or FSW perspective;
SV-AC-8 Malicious Use of hardware commands - backdoors / critical commands
SV-AV-2 Satellites base many operations on timing especially since many operations are automated. Cyberattack to disrupt timing/timers could affect the vehicle (Time Jamming / Time Spoofing)
SV-AV-3 Affect the watchdog timer onboard the satellite which could force satellite into some sort of recovery mode/protocol
SV-IT-3 Compromise boot memory
SV-IT-4 Cause bit flip on memory via single event upsets
SV-MA-8 Payload (or other component) is told to constantly sense or emit or run whatever mission it had to the point that it drained the battery constantly / operated in a loop at maximum power until the battery is depleted.
SV-SP-11 Software defined radios - SDR is also another computer, networked to other parts of the spacecraft that could be pivoted to by an attacker and infected with malicious code. Once access to an SDR is gained, the attacker could alter what the SDR thinks is correct frequencies and settings to communicate with the ground.
SV-SP-7 Software can be broken down into three levels (operating system and drivers’ layer, data handling service layer, and the application layer). Highest impact on system is likely the embedded code at the BIOS, kernel/firmware level. Attacking the on-board operating systems. Since it manages all the programs and applications on the computer, it has a critical role in the overall security of the system. Since threats may occur deliberately or due to human error, malicious programs or persons, or existing system vulnerability mitigations must be deployed to protect the OS.
SV-AV-5 Using fault management system against you. Understanding the fault response could be leveraged to get satellite in vulnerable state. Example, safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of TLM to cause action from ground, or some sort of RPO to cause S/C to go into safe mode;
SV-AV-6 Complete compromise or corruption of running state
SV-DCO-1 Not knowing that you were attacked, or attack was attempted
SV-MA-5 Not being able to recover from cyberattack
SV-AC-1 Attempting access to an access-controlled system resulting in unauthorized access
SV-AC-2 Replay of recorded authentic communications traffic at a later time with the hope that the authorized communications will provide data or some other system reaction
SV-CF-1 Tapping of communications links (wireline, RF, network) resulting in loss of confidentiality; Traffic analysis to determine which entities are communicating with each other without being able to read the communicated information
SV-CF-4 Adversary monitors for safe-mode indicators such that they know when satellite is in weakened state and then they launch attack
SV-IT-1 Communications system spoofing resulting in denial of service and loss of availability and data integrity
SV-AC-7 Weak communication protocols. Ones that don't have strong encryption within it
SV-AV-1 Communications system jamming resulting in denial of service and loss of availability and data integrity
SV-MA-7 Exploit ground system and use to maliciously to interact with the spacecraft
SV-AC-4 Masquerading as an authorized entity in order to gain access/Insider Threat
SV-AV-7 The TT&C is the lead contributor to satellite failure over the first 10 years on-orbit, around 20% of the time. The failures due to gyro are around 12% between year one and 6 on-orbit and then ramp up starting around year six and overtake the contributions of the TT&C subsystem to satellite failure. Need to ensure equipment is not counterfeit and the supply chain is sound.
SV-CF-3 Knowledge of target satellite's cyber-related design details would be crucial to inform potential attacker - so threat is leaking of design data which is often stored Unclass or on contractors’ network
SV-MA-4 Not knowing what your crown jewels are and how to protect them now and in the future.
SV-MA-6 Not planning for security on SV or designing in security from the beginning
SV-SP-10 Compromise development environment source code (applicable to development environments not covered by threat SV-SP-1, SV-SP-3, and SV-SP-4).
SV-SP-2 Testing only focuses on functional requirements and rarely considers end to end or abuse cases
SV-SP-4 General supply chain interruption or manipulation
SV-SP-5 Hardware failure (i.e., tainted hardware) {ASIC and FPGA focused}

Sample Requirements

Requirement Rationale/Additional Guidance/Notes
The [organization] shall identify the applicable physical and environmental protection policies covering the development environment and spacecraft hardware. {PE-1,PE-14,SA-3,SA-3(1),SA-10(3)}
The [organization] shall develop and document program-specific identification and authentication policies for accessing the development environment and spacecraft. {AC-3,AC-14,IA-1,SA-3,SA-3(1)}
The [organization] shall protect documentation and Controlled Unclassified Information (CUI) as required, in accordance with the risk management strategy.{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-10,SC-8(1),SC-28(3),SI-12}
The [organization] shall identify and properly classify mission sensitive design/operations information and access control shall be applied in accordance with classification guides and applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{SV-CF-3,SV-AV-5}{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-8(19),SC-8(1),SC-28(3),SI-12} * Mission sensitive information should be classified as Controlled Unclassified Information (CUI) or formally known as Sensitive but Unclassified. Ideally these artifacts would be rated SECRET or higher and stored on classified networks. Mission sensitive information can typically include a wide range of candidate material: the functional and performance specifications, the RF ICDs, databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, SBU, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission.
The [organization] shall ensure security requirements/configurations are placed in accordance with NIST 800-171 with enhancements in 800-172 on the development environments to prevent the compromise of source code from supply chain or information leakage perspective.{AC-3,SA-3,SA-3(1),SA-15}
The [organization] shall identify all locations (including ground and contractor systems) that store or process sensitive system information.{AC-3(11),CM-12} Space system sensitive information can include a wide range of candidate material: functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of link segment protections subject to disabling/bypassing, failure/anomaly resolution, and any other sensitive information related to architecture, software, and mission operations.
The [organization] shall identify sensitive mission data (e.g.CPI) and document the specific on-board components on which the information is processed and stored.{AC-3(11),CM-12} Space system sensitive information can include a wide range of candidate material: functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of link segment protections subject to disabling/bypassing, failure/anomaly resolution, and any other sensitive information related to architecture, software, and mission operations.
The [organization] shall implement a verifiable flaw remediation process into the developmental and operational configuration management process.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-5,SA-3,SA-3(1),SA-11,SI-3,SI-3(10)} The verifiable process should also include a cross reference to mission objectives and impact statements. Understanding the flaws discovered and how they correlate to mission objectives will aid in prioritization.
The [organization] shall establish robust procedures and technical methods to perform testing to include adversarial testing (i.e.abuse cases) of the platform hardware and software.{CA-8,CP-4(5),RA-5,RA-5(1),RA-5(2),SA-3,SA-4(3),SA-11,SA-11(1),SA-11(2),SA-11(5),SA-11(7),SA-11(8),SA-15(7)}
The [organization] shall distribute documentation to only personnel with defined roles and a need to know.{SV-CF-3,SV-AV-5}{CM-12,CP-2,SA-5,SA-10} Least privilege and need to know should be employed with the protection of all documentation. Documentation can contain sensitive information that can aid in vulnerability discovery, detection, and exploitation. For example, command dictionaries for ground and space systems should be handles with extreme care. Additionally, design documents for missions contain many key elements that if compromised could aid in an attacker successfully exploiting the system.
The [organization] shall define processes and procedures to be followed when integrity verification tools detect unauthorized changes to software, firmware, and information.{SV-IT-2}{CM-3,CM-3(1),CM-3(5),CM-5(6),CM-6,CP-2,IR-6,IR-6(2),PM-30,SC-16(1),SC-51,SI-3,SI-4(7),SI-4(24),SI-7,SI-7(7),SI-7(10)}
The [organization] shall conduct a criticality analysis to identify mission critical functions and critical components and reduce the vulnerability of such functions and components through secure system design.{SV-SP-3,SV-SP-4,SV-AV-7,SV-MA-4}{CP-2,CP-2(8),PL-7,PM-11,PM-30(1),RA-3(1),RA-9,SA-8(9),SA-8(11),SA-8(25),SA-12,SA-14,SA-15(3),SC-7(29),SR-1} During SCRM, criticality analysis will aid in determining supply chain risk. For mission critical functions/components, extra scrutiny must be applied to ensure supply chain is secured.
The [organization] shall employ Operations Security (OPSEC) safeguards to protect supply chain-related information for the system, system components, or system services. {CP-2(8),PM-30,SA-12(9),SC-38,SR-7}
The [organization] shall define the secure communication protocols to be used within the mission in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{PL-7,RA-5(4),SA-4(9),SA-8(18),SA-8(19),SC-8(1),SC-16(3),SC-40(4),SI-12}
The [organization] shall require subcontractors developing information system components or providing information system services (as appropriate) to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} Select the particular subcontractors, software vendors, and manufacturers based on the criticality analysis performed for the Program Protection Plan and the criticality of the components that they supply. 
The [organization] shall approve, document, and control the use of operational data in preproduction environments (i.e., development, I&T, etc.).{SA-3(2)}
The [organization] shall categorize/classify preproduction environments (i.e., development, I&T, etc.) at the same level as any operational data in use within the environment and protect the system consistent with its categorization/classification.{SA-3(2)}
The [organization] shall require the developer of the system, system component, or system services to identify organizational data that will be processed or stored on non-organizational systems.{SA-4(12)}
The [organization] shall require the developer of the system, system component, or system services to remove all organizational data from contractor system(s) when no longer needed for development purposes or whenever instructed by the organization.{SA-4(12),SI-21}
The [organization] shall protect documentation and Essential Elements of Information (EEI) as required, in accordance with the risk management strategy.{SV-CF-3,SV-AV-5}{SA-5} Essential Elements of Information (EEI):
The [organization] shall ensure that all Electrical, Electronic, Electro-mechanical & Electro-optical (EEEE)  and mechanical piece parts procured from the Original Component Manufacturer (OCM) or their authorized distribution network.{SA-8(9),SA-8(11),SA-12,SA-12(1),SC-16(1),SR-1,SR-5}
The [organization] shall develop policies and procedures to ensure proper care is taken when disposing of sensitive data, documentation, or system components throughout the entire mission lifecycle.{SR-12}
The [organization] shall employ [Program-defined Operations Security (OPSEC) safeguards] to protect supply chain-related information for the system, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-7,SC-38,CP-2(8)} OPSEC safeguards may include: (1) Limiting the disclosure of information needed to design, develop, test, produce, deliver, and support the element for example, supplier identities, supplier processes, potential suppliers, security requirements, design specifications, testing and evaluation result, and system/component configurations, including the use of direct shipping, blind buys, etc.; (2) Extending supply chain awareness, education, and training for suppliers, intermediate users, and end users; (3) Extending the range of OPSEC tactics, techniques, and procedures to potential suppliers, contracted suppliers, or sub-prime contractor tier of suppliers; and (4) Using centralized support and maintenance services to minimize direct interactions between end users and original suppliers.
For FPGA pre-silicon artifacts that are developed, coded, and tested by a developer that is not accredited, the [organization] shall be subjected to a development environment and pre-silicon artifacts risk assessment by [organization]. Based on the results of the risk assessment, the [organization] may need to implement protective measures or other processes to ensure the integrity of the FPGA pre-silicon artifacts.{SV-SP-5}{SA-3,SA-3(1),SA-8(9),SA-8(11),SA-12,SA-12(1),SR-1,SR-5} DOD-I-5200.44 requires the following: 4.c.2 “Control the quality, configuration, and security of software, firmware, hardware, and systems throughout their lifecycles... Employ protections that manage risk in the supply chain… (e.g., integrated circuits, field-programmable gate arrays (FPGA), printed circuit boards) when they are identifiable (to the supplier) as having a DOD end-use. “ 4.e “In applicable systems, integrated circuit-related products and services shall be procured from a Trusted supplier accredited by the Defense Microelectronics Activity (DMEA) when they are custom-designed, custommanufactured, or tailored for a specific DOD military end use (generally referred to as application-specific integrated circuits (ASIC)). “ 1.g “In coordination with the DOD CIO, the Director, Defense Intelligence Agency (DIA), and the Heads of the DOD Components, develop a strategy for managing risk in the supply chain for integrated circuit-related products and services (e.g., FPGAs, printed circuit boards) that are identifiable to the supplier as specifically created or modified for DOD (e.g., military temperature range, radiation hardened).
The [organization] shall require the developer of the system, system component, or system services to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} Examples of good security practices would be using defense-in-depth tactics across the board, least-privilege being implemented, two factor authentication everywhere possible, using DevSecOps, implementing and validating adherence to secure coding standards, performing static code analysis, component/origin analysis for open source, fuzzing/dynamic analysis with abuse cases, etc.
The [spacecraft] shall monitor security relevant telemetry points for malicious commanding attempts.{AC-17,AC-17(1),AC-17(10),AU-3(1),RA-10,SC-7,SC-16,SC-16(2),SC-16(3),SI-3(8),SI-4,SI-4(1),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
The [spacecraft] shall protect authenticator content from unauthorized disclosure and modification.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),IA-5,IA-5(6),RA-5(4),SA-8(18),SA-8(19),SC-28(3)}
The [spacecraft] encryption key handling shall be handled outside of the onboard software and protected using cryptography.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(1),SC-28(3)}
The [spacecraft] encryption keys shall be restricted so that the onboard software is not able to access the information for key readout.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
The [spacecraft] encryption keys shall be restricted so that they cannot be read via any telecommands.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
The [spacecraft] shall implement a reference monitor mechanism that mediates access between subjects and objects based on a defined set of rules, that is designed and configured to resist tampering or unauthorized alteration, providing a reliable and secure foundation for access control within the information system.{AC-25}
The [spacecraft] shall authenticate the ground station (and all commands) and other spacecraft before establishing remote connections using bidirectional authentication that is cryptographically based.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(2),AC-17(10),AC-18(1),AC-20,IA-3(1),IA-4,IA-4(9),IA-7,IA-9,SA-8(18),SA-8(19),SA-9(2),SC-7(11),SC-16(1),SC-16(2),SC-16(3),SC-23(3),SI-3(9)} Authorization can include embedding opcodes in command strings, using trusted authentication protocols, identifying proper link characteristics such as emitter location, expected range of receive power, expected modulation, data rates, communication protocols, beamwidth, etc.; and tracking command counter increments against expected values.
The [spacecraft] shall implement cryptographic mechanisms to identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters.{SV-AV-1,SV-IT-1}{AC-3,AC-20,SA-8(19),SC-8(1),SC-23(3),SC-40(3),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
The [spacecraft] shall implement relay and replay-resistant authentication mechanisms for establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,IA-2(8),IA-2(9),SA-8(18),SC-8(1),SC-16(1),SC-16(2),SC-23(3),SC-40(4)}
The [spacecraft] shall ensure that processes reusing a shared system resource (e.g., registers, main memory, secondary storage) do not have access to information (including encrypted representations of information) previously stored in that resource during a prior use by a process after formal release of that resource back to the system or reuse.{SV-AC-6}{AC-3,PM-32,SA-8(2),SA-8(5),SA-8(6),SA-8(19),SC-4,SI-3}
The [spacecraft] shall protect the confidentiality and integrity of the following information using cryptography while it is at rest: [all information].{AC-3,SA-8(19),SC-28,SC-28(1),SI-7(6)} * The intent as written is for all transmitted traffic to be protected. This includes internal to internal communications and especially outside of the boundary.
The [spacecraft] shall maintain the confidentiality and integrity of information during preparation for transmission and during reception.{SV-AC-7}{AC-3,SA-8(19),SC-8,SC-8(1),SC-8(2),SC-16,SC-16(1)} * Preparation for transmission and during reception includes the aggregation, packing, and transformation options performed prior to transmission and the undoing of those operations that occur upon receipt.
The [spacecraft] shall encrypt all telemetry on downlink regardless of operating mode to protect current state of spacecraft.{SV-CF-4}{AC-3(10),RA-5(4),SA-8(18),SA-8(19),SC-8,SC-8(1),SC-13}
The [spacecraft] shall not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode).{SV-AC-1,SV-CF-1,SV-CF-2}{AC-3(10),SA-8(18),SA-8(19),SC-16(2),SC-16(3),SC-40(4)}
The [spacecraft] shall ensure that sensitive information can only be accessed by personnel with appropriate roles and an explicit need for such information to perform their duties.{AC-3(11),CM-12} Space system sensitive information can include a wide range of candidate material: functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of link segment protections subject to disabling/bypassing, failure/anomaly resolution, and any other sensitive information related to architecture, software, and mission operations.
The [spacecraft] shall enforce approved authorizations for controlling the flow of information within the platform and between interconnected systems so that information does not leave the platform boundary unless it is encrypted.{SV-AC-6}{AC-3(3),AC-3(4),AC-4,AC-4(6),AC-4(21),CA-3,CA-3(6),CA-3(7),CA-9,IA-9,SA-8(19),SC-8(1),SC-16(3)}
The [spacecraft] security implementation shall ensure that information should not be allowed to flow between partitioned applications unless explicitly permitted by the system.{AC-3(3),AC-3(4),AC-4,AC-4(6),AC-4(21),CA-9,IA-9,SA-8(3),SA-8(18),SA-8(19),SC-2(2),SC-7(29),SC-16,SC-32}
The [spacecraft] shall, when transferring information between different security domains, implements the following security policy filters that require fully enumerated formats that restrict data structure and content: connectors and semaphores implemented in the RTOS.{SV-AC-6}{AC-3(3),AC-3(4),AC-4(14),IA-9,SA-8(19),SC-16}
The [spacecraft] shall implement boundary protections to separate bus, communications, and payload components supporting their respective functions.{SV-AC-6}{AC-3(3),AC-3(4),CA-9,SA-8(3),SA-8(14),SA-8(18),SA-8(19),SA-17(7),SC-2,SC-2(2),SC-7(13),SC-7(21),SC-7(29),SC-16(3),SC-32,SI-3,SI-4(13),SI-4(25)}
The [spacecraft] shall isolate mission critical functionality from non-mission critical functionality by means of an isolation boundary (e.g.via partitions) that controls access to and protects the integrity of, the hardware, software, and firmware that provides that functionality.{SV-AC-6}{AC-3(3),AC-3(4),CA-9,SA-8(3),SA-8(19),SA-17(7),SC-2,SC-3,SC-3(4),SC-7(13),SC-7(29),SC-32,SC-32(1),SI-3,SI-7(10),SI-7(12)}
The [spacecraft] data within partitioned applications shall not be read or modified by other applications/partitions.{SV-AC-6}{AC-3(3),AC-3(4),SA-8(19),SC-2(2),SC-4,SC-6,SC-32}
The [spacecraft] shall prevent unauthorized access to system resources by employing an efficient capability based object model that supports both confinement and revocation of these capabilities when the platform security deems it necessary.{SV-AC-6}{AC-3(8),IA-4(9),PM-32,SA-8(2),SA-8(5),SA-8(6),SA-8(18),SA-8(19),SC-2(2),SC-4,SC-16,SC-32,SI-3}
The [organization] shall state that information should not be allowed to flow between partitioned applications unless explicitly permitted by the Program's security policy.{SV-AC-6}{AC-4,AC-4(6)}
The [spacecraft] shall use protected processing domains to enforce the policy that information does not leave the platform boundary unless it is encrypted as a basis for flow control decisions.{SV-AC-6}{AC-4(2),IA-9,SA-8(19),SC-8(1),SC-16(3)}
The [spacecraft] shall define the security functions and security-relevant information for which the system must protect from unauthorized access.{AC-6(1),SA-8(19),SC-7(13),SC-16}
The [spacecraft] shall implement cryptographic mechanisms to protect the integrity of audit information and audit tools.{SV-DCO-1}{AU-9(3),RA-10,SC-8(1),SI-3,SI-3(10),SI-4(24)}
The [organization] shall ensure that the allocated security safeguards operate in a coordinated and mutually reinforcing manner.{SV-MA-6}{CA-7(5),PL-7,PL-8(1),SA-8(19)}
The [organization] shall document and design a security architecture using a defense-in-depth approach that allocates the [organization]s defined safeguards to the indicated locations and layers: [Examples include: operating system abstractions and hardware mechanisms to the separate processors in the platform, internal components, and the FSW].{SV-MA-6}{CA-9,PL-7,PL-8,PL-8(1),SA-8(3),SA-8(4),SA-8(7),SA-8(9),SA-8(11),SA-8(13),SA-8(19),SA-8(29),SA-8(30)}
The [spacecraft] shall utilize automated mechanisms to protect sensitive information and detect and alert when sensitive information is accessed without satisfying defined criteria.{CM-12(1)}
The [spacecraft] shall provide the capability to enter the platform into a known good, operational cyber-safe mode from a tamper-resistant, configuration-controlled (“gold”) image that is authenticated as coming from an acceptable supplier, and has its integrity verified.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4(3),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-13,SI-17} Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and SW functions to preattack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on available equipment still available after a cyberattack. The goal is for the vehicle to resume full mission operations. If not possible, a reduced level of mission capability should be achieved.
The [spacecraft] shall enter cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-17}
The [spacecraft] shall fail to a known secure state for failures during initialization, and aborts preserving information necessary to return to operations in failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(24),SC-24,SI-13,SI-17}
The [spacecraft] shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution).{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2}{CP-13,SA-8(19),SA-8(24),SC-7(18),SI-13,SI-13(4)}
The [spacecraft] shall provide or support the capability for recovery and reconstitution to a known state after a disruption, compromise, or failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-4(4),CP-10,CP-10(4),CP-10(6),CP-13,IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(24)}
The [spacecraft] shall utilize TRANSEC.{SV-AV-1}{CP-8,RA-5(4),SA-8(18),SA-8(19),SC-8(1),SC-8(4),SC-16,SC-16(1),SC-16(2),SC-16(3),SC-40(4)} Transmission Security (TRANSEC) is used to ensure the availability of transmissions and limit intelligence collection from the transmissions. TRANSEC is secured through burst encoding, frequency hopping, or spread spectrum methods where the required pseudorandom sequence generation is controlled by a cryptographic algorithm and key. Such keys are known as transmission security keys (TSK). The objectives of transmission security are low probability of interception (LPI), low probability of detection (LPD), and antijam which means resistance to jamming (EPM or ECCM).
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with CNSSP 12 and applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{IA-7,SC-8(1),SC-13,SI-12}
The [spacecraft] shall recover to a known cyber-safe state when an anomaly is detected.{IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-10(6),SI-13,SI-17}
The [spacecraft] shall perform an orderly, controlled system shut-down to a known cyber-safe state upon receipt of a termination command or condition.{PE-11,PE-11(1),SA-8(16),SA-8(19),SA-8(24),SI-17}
The [spacecraft] shall operate securely in off-nominal power conditions, including loss of power and spurious power transients.{PE-11,PE-11(1),SA-8(16),SA-8(19),SI-13,SI-17}
The [spacecraft] shall protect system components, associated data communications, and communication buses in accordance with: (i) national emissions and TEMPEST policies and procedures, and (ii) the security category or sensitivity of the transmitted information.{SV-CF-2,SV-MA-2}{PE-14,PE-19,PE-19(1),RA-5(4),SA-8(18),SA-8(19),SC-8(1)} The measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements. The concerns addressed by this control during operation are emanations leakage between multiple payloads within a single space platform, and between payloads and the bus.
The [spacecraft] shall be designed such that it protects itself from information leakage due to electromagnetic signals emanations.{SV-CF-2,SV-MA-2}{PE-19,PE-19(1),RA-5(4),SA-8(19)} This requirement applies if system components are being designed to address EMSEC and the measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements.
The [organization] shall implement a security architecture and design that provides the required security functionality, allocates security controls among physical and logical components, and integrates individual security functions, mechanisms, and processes together to provide required security capabilities and a unified approach to protection.{SV-MA-6}{PL-7,SA-2,SA-8,SA-8(1),SA-8(2),SA-8(3),SA-8(4),SA-8(5),SA-8(6),SA-8(7),SA-8(9),SA-8(11),SA-8(13),SA-8(19),SA-8(29),SA-8(30),SC-32,SC-32(1)}
The [spacecraft] shall prevent unauthorized and unintended information transfer via shared system resources.{SV-AC-6}{PM-32,SA-8(2),SA-8(5),SA-8(6),SA-8(19),SC-2(2),SC-4}
The [spacecraft] shall only use communication protocols that support encryption within the mission.{SA-4(9),SA-8(18),SA-8(19),SC-40(4)}
The [spacecraft] shall maintain a separate execution domain for each executing process.{SV-AC-6}{SA-8(14),SA-8(19),SC-2(2),SC-7(21),SC-39,SI-3}
The [spacecraft] flight software must not be able to tamper with the security policy or its enforcement mechanisms.{SV-AC-6}{SA-8(16),SA-8(19),SC-3,SC-7(13)}
The [spacecraft] shall initialize the platform to a known safe state.{SA-8(19),SA-8(23),SA-8(24),SI-17}
The [spacecraft] shall maintain the confidentiality and integrity of information during preparation for transmission and during reception in accordance with [organization] provided encryption matrix.{SA-8(19),SC-8,SC-8(1),SC-8(2),SC-8(3)} * Preparation for transmission and during reception includes the aggregation, packing, and transformation options performed prior to transmission and the undoing of those operations that occur upon receipt.
The [spacecraft] shall implement cryptographic mechanisms that achieve adequate protection against the effects of intentional electromagnetic interference.{SV-AV-1,SV-IT-1}{SA-8(19),SC-8(1),SC-40,SC-40(1)}
The [spacecraft] shall implement cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission unless otherwise protected by alternative physical safeguards.{SV-AC-7}{SC-8(1),SI-7(6)}
The [spacecraft] shall implement cryptographic mechanisms to protect message externals unless otherwise protected by alternative physical safeguards.{SV-AC-7}{SC-8(3)}
The [spacecraft] shall limit the generation and storage of sensitive/critical mission or system information.Generation shall be done on-demand where possible, and the information shall be deleted immediately when no longer needed.{SI-21}