Payload (or other component) is told to constantly sense or emit or run whatever mission it had to the point that it drained the battery constantly / operated in a loop at maximum power until the battery is depleted.
Requirement | Rationale/Additional Guidance/Notes |
---|
ID | Name | Description | |
---|---|---|---|
REC-0001 | Gather Spacecraft Design Information | Threat actors may gather information about the victim SV's design that can be used for future campaigns or to help perpetuate other techniques. Information about the SV can include software, firmware, encryption type, purpose, as well as various makes and models of subsystems. | |
REC-0001.07 | Payload | Threat actors may gather information about the type(s) of payloads hosted on the victim SV. This information could include specific commands, make and model, and relevant software. Threat actors may also gather information about the location of the payload on the bus and internal routing as it pertains to commands within the payload itself. | |
IA-0006 | Compromise Hosted Payload | Threat actors may compromise the target SV hosted payload to initially access and/or persist within the system. Hosted payloads can usually be accessed from the ground via a specific command set. The command pathways can leverage the same ground infrastructure or some host payloads have their own ground infrastructure which can provide an access vector as well. Threat actors may be able to leverage the ability to command hosted payloads to upload files or modify memory addresses in order to compromise the system. Depending on the implementation, hosted payloads may provide some sort of lateral movement potential. | |
LM-0001 | Hosted Payload | Threat actors may use the hosted payload within the victim SV in order to gain access to other subsystems. The hosted payload often has a need to gather and send data to the internal subsystems, depending on its purpose. Threat actors may be able to take advantage of this communication in order to laterally move to the other subsystems and have commands be processed. | |
IMP-0001 | Deception (or Misdirection) | Threat actors may seek to deceive mission stakeholders (or even military decision makers) for a multitude of reasons. Telemetry values could be modified, attacks could be designed to intentionally mimic another threat actor's TTPs, and even allied ground infrastructure could be compromised and used as the source of communications to the SV. | |
IMP-0002 | Disruption | Threat actors may seek to disrupt communications from the victim SV to the ground controllers or other interested parties. By disrupting communications during critical times, there is the potential impact of data being lost or critical actions not being performed. This could cause the SV's purpose to be put into jeopardy depending on what communications were lost during the disruption. This behavior is different than Denial as this attack can also attempt to modify the data and messages as they are passed as a way to disrupt communications. | |
IMP-0003 | Denial | Threat actors may seek to deny ground controllers and other interested parties access to the victim SV. This would be done exhausting system resource, degrading subsystems, or blocking communications entirely. This behavior is different from Disruption as this seeks to deny communications entirely, rather than stop them for a length of time. | |
IMP-0004 | Degradation | Threat actors may target various subsystems or the hosted payload in such a way in order to rapidly increase it's degradation. This could potentially shorten the lifespan of the victim SV. |
ID | Name | Description | NIST Rev5 | D3FEND | ISO 27001 | |
---|---|---|---|---|---|---|
CM0000 | Countermeasure Not Identified | This technique is a result of utilizing TTPs to create an impact and the applicable countermeasures are associated with the TTPs leveraged to achieve the impact | None | None | ||
CM0001 | Protect Sensitive Information | Organizations should look to identify and properly classify mission sensitive design/operations information (e.g., fault management approach) and apply access control accordingly. Any location (ground system, contractor networks, etc.) storing design information needs to ensure design info is protected from exposure, exfiltration, etc. Space system sensitive information may be classified as Controlled Unclassified Information (CUI) or Company Proprietary. Space system sensitive information can typically include a wide range of candidate material: the functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, CUI, proprietary, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission. Sensitive documentation should only be accessed by personnel with defined roles and a need to know. Well established access controls (roles, encryption at rest and transit, etc.) and data loss prevention (DLP) technology are key countermeasures. The DLP should be configured for the specific data types in question. | AC-3(11) AC-4(23) AC-4(25) CM-12 CM-12(1) PM-11 PM-17 SA-3(1) SA-3(2) SA-4(12) SA-5 SA-9(7) SI-21 SI-23 SR-12 SR-7 | A.8.4 A.8.11 A.8.10 A.8.33 7.5.1 7.5.2 7.5.3 A.5.37 A.8.10 A.5.22 |