SV-AC-5

Proximity operations (i.e., grappling satellite)


Informational References

ID: SV-AC-5
DiD Layer: SBC
CAPEC #:  121 | 390
NIST Rev5 Control Tag Mapping:  CA-3 | CA-3(6) | PE-21 | SA-8 | SA-8(18) | SC-41 | SI-10 | SI-10(6)
Lowest Threat Tier to
Create Threat Event:  
VI
Notional Risk Rank Score: 

High-Level Requirements

The Program shall disable any maintenance and development access to the spacecraft before launch (i.e., JTAG ports)

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The [spacecraft] shall provide the capability for data connection ports or input/output devices to be disabled or removed prior to spacecraft operations.{SV-AC-5}{SA-9(2),SC-7(14),SC-41,SC-51} Intent is for external physical data ports to be disabled (logical or physical) while in operational orbit. Port disablement does not necessarily need to be irreversible.

Related SPARTA Techniques and Sub-Techniques

ID Name Description
REC-0005 Eavesdropping Threat actors may seek to capture network communications throughout the ground station and radio frequency (RF) communication used for uplink and downlink communications. RF communication frequencies vary between 30MHz and 60 GHz. Threat actors may capture RF communications using specialized hardware, such as software defined radio (SDR), handheld radio, or a computer with radio demodulator turned to the communication frequency. Network communications may be captured using packet capture software while the threat actor is on the target network.
REC-0005.03 Proximity Operations Threat actors may capture signals and/or network communications as they travel on-board the vehicle (i.e., EMSEC/TEMPEST), via RF, or terrestrial networks. This information can be decoded to determine commanding and telemetry protocols, command times, and other information that could be used for future attacks.
IA-0005 Rendezvous & Proximity Operations Threat actors may perform a space rendezvous which is a set of orbital maneuvers during which a spacecraft arrives at the same orbit and approach to a very close distance (e.g. within visual contact or close proximity) to a target SV.
IA-0005.01 Compromise Emanations Threat actors in close proximity may intercept and analyze electromagnetic radiation emanating from cryptoequipment and/or the target SV (i.e., main bus) to determine whether the emanations are information bearing. The data could be used to establish initial access.
IA-0005.02 Docked Vehicle / OSAM Threat actors may leverage docking vehicles to laterally move into a target SV. If information is known on docking plans, a threat actor may target vehicles on the ground or in space to deploy malware to laterally move or execute malware on the target SV via the docking interface.
IA-0005.03 Proximity Grappling Threat actors may posses the capability to grapple target SVs once it has established the appropriate space rendezvous. If from a proximity / rendezvous perspective a threat actor has the ability to connect via docking interface or expose testing (i.e., JTAG port) once it has grappled the target SV, they could perform various attacks depending on the access enabled via the physical connection.
IA-0011 Auxiliary Device Compromise Threat actors may exploit the auxiliary/peripheral devices that get plugged into space vehicles. It is no longer atypical to see space vehicles, especially CubeSats, with Universal Serial Bus (USB) ports or other ports where auxiliary/peripheral devices can be plugged in. Threat actors can execute malicious code on the space vehicles by copying the malicious code to auxiliary/peripheral devices and taking advantage of logic on the space vehicle to execute code on these devices. This may occur through manual manipulation of the auxiliary/peripheral devices, modification of standard IT systems used to initially format/create the auxiliary/peripheral device, or modification to the auxiliary/peripheral devices' firmware itself.
IA-0012 Assembly, Test, and Launch Operation Compromise Threat actors may target the spacecraft hardware and/or software while the spacecraft is at Assembly, Test, and Launch Operation (ATLO). ATLO is often the first time pieces of the spacecraft are fully integrated and exchanging data across interfaces. Malware could propagate from infected devices across the integrated spacecraft. For example, test equipment (i.e., transient cyber asset) is often brought in for testing elements of the spacecraft. Additionally, varying levels of physical security is in place which may be a reduction in physical security typically seen during development. The ATLO environment should be considered a viable attack vector and the appropriate/equivalent security controls from the primary development environment should be implemented during ATLO as well.
EX-0015 Side-Channel Attack Threat actors may use a side-channel attack attempts to gather information or influence the program execution of a system by measuring or exploiting indirect effects of the SV. Side-Channel attacks can be active or passive. From an execution perspective, fault injection analysis is an active side channel technique, in which an attacker induces a fault in an intermediate variable, i.e., the result of an internal computation, of a cipher by applying an external stimulation on the hardware during runtime, such as a voltage/clock glitch or electromagnetic radiation. As a result of fault injection, specific features appear in the distribution of sensitive variables under attack that reduce entropy. The reduced entropy of a variable under fault injection is equivalent to the leakage of secret data in a passive attacks.
EXF-0002 Side-Channel Attack Threat actors may use a side-channel attack attempts to gather information by measuring or exploiting indirect effects of the SV. Information within the SV can be extracted through these side-channels in which sensor data is analyzed in non-trivial ways to recover subtle, hidden or unexpected information. A series of measurements of a side-channel constitute an identifiable signature which can then be matched against a signature database to identify target information, without having to explicitly decode the side-channel.
EXF-0005 Proximity Operations Threat actors may leverage the lack of emission security or tempest controls to exfiltrate information using a visiting SV. This is similar to side-channel attacks but leveraging a visiting SV to measure the signals for decoding purposes.
LM-0004 Visiting Vehicle Interface(s) Threat actors may move to other SVs through visiting vehicle interfaces. When a vehicle docks with a SV, many programs are automatically triggered in order to ensure docking mechanisms are locked. This entails several data points and commands being sent to and from the SV and the visiting vehicle. If a threat actor were to compromise a visiting vehicle, they could target these specific programs in order to send malicious commands to the victim SV once docked.

Related SPARTA Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001