SI-7(9) - Software, Firmware, and Information Integrity | Verify Boot Process

Verify the integrity of the boot process of the following system components: [Assignment: organization-defined system components].


Informational References

ISO 27001

ID: SI-7(9)
Enhancement of : SI-7

Countermeasures Covered by Control

ID Name Description D3FEND
CM0014 Secure boot Software/Firmware must verify a trust chain that extends through the hardware root of trust, boot loader, boot configuration file, and operating system image, in that order. The trusted boot/RoT computing module should be implemented on radiation tolerant burn-in (non-programmable) equipment. 

Space Threats Tagged by Control

ID Description
SV-IT-3 Compromise boot memory

Sample Requirements

Requirement Rationale/Additional Guidance/Notes
The [spacecraft] boot firmware must validate the boot loader, boot configuration file, and operating system image, in that order, against their respective signatures.{SV-IT-3}{SA-8(10),SA-8(11),SA-8(12),SI-7(9),SI-7(10)} A signature is ~770 bits long. No requirement is imposed on the storage location of signatures.
The [spacecraft] boot firmware must verify a trust chain that extends through the hardware root of trust, boot loader, boot configuration file, and operating system image, in that order.{SV-IT-3}{SA-8(10),SA-8(11),SA-8(12),SI-7(9),SI-7(10)} These three items were chosen because they’re intended to be static values (once properly set up) but are in volatile storage. Also, the Boot ROM can’t be modified, so there’s no reason to check a signature.
The [spacecraft] trusted boot/RoT computing module shall be implemented on radiation tolerant burn-in (non-programmable) equipment.{SA-8(10),SA-8(11),SA-8(12),SI-7(9),SI-7(10)}
The [spacecraft] trusted boot/RoT shall be a separate compute engine controlling the trusted computing platform cryptographic processor.{SA-8(10),SA-8(11),SA-8(12),SI-7(9),SI-7(10)}
The [spacecraft] shall perform attestation at each stage of startup and ensure overall trusted boot regime (i.e., root of trust).{SV-IT-3}{SA-8(10),SA-8(11),SA-8(12),SI-7(9),SI-7(10),SI-7(17)} It is important for the computing module to be able to access a set of functions and commands that it trusts; that is, that it knows to be true. This concept is referred to as root of trust (RoT) and should be included in the spacecraft design. With RoT, a device can always be trusted to operate as expected. RoT functions, such as verifying the device’s own code and configuration, must be implemented in secure hardware (i.e., field programmable gate arrays). By checking the security of each stage of power-up, RoT devices form the first link in a chain of trust that protects the spacecraft
The [spacecraft] hardware root of trust must be an ECDSA NIST P-384 public key.{SV-IT-3}{SI-7(9)} No requirement is imposed on uniqueness.
The [spacecraft] hardware root of trust must be loadable only once, post-purchase.{SV-IT-3}{SI-7(9)} No requirement is imposed on preventing hardware readout. The public key belongs to the customer, not the manufacturer, so it must be loaded after purchase. Also, if it can be overwritten, there’s no reason to trust it.
The [spacecraft] shall implement trusted boot/RoT as a separate compute engine controlling the trusted computing platform cryptographic processor.{SV-IT-3}{SI-7(9)}
The [spacecraft] shall implement trusted boot/RoT computing module on radiation tolerant burn-in (non-programmable) equipment.{SV-IT-3}{SI-7(9)}
The [spacecraft] boot firmware must enter a recovery routine upon failing to verify signed data in the trust chain, and not execute or trust that signed data.{SV-IT-3}{SI-7(9),SI-7(10)} No other requirements are imposed on the recovery routine besides not using the failed data. Unverifiable data isn’t trusted and shouldn’t be run. 
The [spacecraft] root of trust must be an ECDSA NIST P-384 public key.{SI-7(9),SI-7(10)}
The [spacecraft] root of trust must be loadable only once, post-purchase.{SI-7(9),SI-7(10)}
The [spacecraft] secure boot mechanism shall be Commercial National Security Algorithm Suite (CNSA) compliant.{SV-IT-3}{SI-7(9),SI-7(10)} No certification process is required (or exists). The CNSA is easy to meet, only restricts algorithm choice, and aids ease-of-use for government customers.
The [spacecraft] shall allocate enough boot ROM memory for secure boot firmware execution.{SV-IT-3}{SI-7(9),SI-7(10)}
The [spacecraft] shall allocate enough SRAM memory for secure boot firmware execution.{SV-IT-3}{SI-7(9),SI-7(10)}
The [spacecraft] shall support the algorithmic construct of Elliptic Curve Digital Signature Algorithm (ECDSA) NIST P-384 + SHA-38 or equivalent strength.{SV-IT-3}{SI-7(9),SI-7(10)} Timing data may suggest cryptographic accelerators are unnecessary. This construct was chosen because (a) it’s in the CNSA suite and (b) it doesn’t require secret values to be stored

Related SPARTA Techniques and Sub-Techniques

ID Name Description
IA-0001 Compromise Supply Chain Threat actors may manipulate or compromise products or product delivery mechanisms before the customer receives them in order to achieve data or system compromise.
IA-0001.02 Software Supply Chain Threat actors may manipulate software binaries and applications prior to the customer receiving them in order to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one.
IA-0002 Compromise Software Defined Radio Threat actors may target software defined radios due to their software nature to establish C2 channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert C2 channels for a threat actor.
IA-0004 Secondary/Backup Communication Channel Threat actors may compromise alternative communication pathways which may not be as protected as the primary pathway. Depending on implementation the contingency communication pathways/solutions may lack the same level of security (i.e., physical security, encryption, authentication, etc.) which if forced to use could provide a threat actor an opportunity to launch attacks. Typically these would have to be coupled with other denial of service techniques on the primary pathway to force usage of secondary pathways.
IA-0004.02 Receiver Threat actors may target the backup/secondary receiver on the space vehicle as a method to inject malicious communications into the mission. The secondary receivers may come from different supply chains than the primary which could have different level of security and weaknesses. Similar to the ground station, the communication through the secondary receiver could be forced or happening naturally.
IA-0007 Compromise Ground Station Threat actors may initially compromise the ground station in order to access the target SV. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes.
IA-0007.01 Compromise On-Orbit Update Threat actors may manipulate and modify on-orbit updates before they are sent to the target SV. This attack can be done in a number of ways, including manipulation of source code, manipulating environment variables, on-board table/memory values, or replacing compiled versions with a malicious one.
EX-0004 Compromise Boot Memory Threat actors may manipulate boot memory in order to execute malicious code, bypass internal processes, or DoS the system. This technique can be used to perform other tactics such as Defense Evasion.
EX-0005 Exploit Hardware/Firmware Corruption Threat actors can target the underlying hardware and/or firmware using various TTPs that will be dependent on the specific hardware/firmware. Typically, software tools (e.g., antivirus, antimalware, intrusion detection) can protect a system from threat actors attempting to take advantage of those vulnerabilities to inject malicious code. However, there exist security gaps that cannot be closed by the above-mentioned software tools since they are not stationed on software applications, drivers or the operating system but rather on the hardware itself. Hardware components, like memory modules and caches, can be exploited under specific circumstances thus enabling backdoor access to potential threat actors. In addition to hardware, the firmware itself which often is thought to be software in its own right also provides an attack surface for threat actors. Firmware is programming that's written to a hardware device's non-volatile memory where the content is saved when a hardware device is turned off or loses its external power source. Firmware is written directly onto a piece of hardware during manufacturing and it is used to run on the device and can be thought of as the software that enables hardware to run. In the space vehicle context, firmware and field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic/code is considered equivalent to firmware.
EX-0005.01 Design Flaws Threat actors may target design features/flaws with the hardware design to their advantage to cause the desired impact. Threat actors may utilize the inherent design of the hardware (e.g. hardware timers, hardware interrupts, memory cells), which is intended to provide reliability, to their advantage to degrade other aspects like availability. Additionally, field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic can be exploited just like software code can be exploited. There could be logic/design flaws embedded in the hardware (i.e., FPGA/ASIC) which may be exploitable by a threat actor.
EXF-0006 Modify Software Defined Radio Threat actors may target software defined radios due to their software nature to setup exfiltration channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert exfiltration channels for a threat actor.
PER-0001 Memory Compromise Threat actors may manipulate memory (boot, RAM, etc.) in order for their malicious code and/or commands to remain on the victim SV. The SV may have mechanisms that allow for the automatic running of programs on system reboot, entering or returning to/from safe mode, or during specific events. Threat actors may target these specific memory locations in order to store their malicious code or file, ensuring that the attack remains on the system even after a reset.
PER-0002 Backdoor Threat actors may find and target various backdoors, or inject their own, within the victim SV in the hopes of maintaining their attack.
PER-0002.02 Software Threat actors may inject code to create their own backdoor to establish persistent access to the SV. This may be done through modification of code throughout the software supply chain or through modification of the software-defined radio configuration (if applicable).