The [organization] shall identify the applicable physical and environmental protection policies covering the development environment and spacecraft hardware. {PE-1,PE-14,SA-3,SA-3(1),SA-10(3)}
|
|
The [organization] shall develop and document program-specific identification and authentication policies for accessing the development environment and spacecraft. {AC-3,AC-14,IA-1,SA-3,SA-3(1)}
|
|
The [organization] shall protect documentation and Controlled Unclassified Information (CUI) as required, in accordance with the risk management strategy.{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-10,SC-8(1),SC-28(3),SI-12}
|
|
The [organization] shall identify and properly classify mission sensitive design/operations information and access control shall be applied in accordance with classification guides and applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{SV-CF-3,SV-AV-5}{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-8(19),SC-8(1),SC-28(3),SI-12}
|
* Mission sensitive information should be classified as Controlled Unclassified Information (CUI) or formally known as Sensitive but Unclassified. Ideally these artifacts would be rated SECRET or higher and stored on classified networks. Mission sensitive information can typically include a wide range of candidate material: the functional and performance specifications, the RF ICDs, databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, SBU, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission.
|
The [organization] shall ensure security requirements/configurations are placed in accordance with NIST 800-171 with enhancements in 800-172 on the development environments to prevent the compromise of source code from supply chain or information leakage perspective.{AC-3,SA-3,SA-3(1),SA-15}
|
|
The [organization] shall implement a verifiable flaw remediation process into the developmental and operational configuration management process.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-5,SA-3,SA-3(1),SA-11,SI-3,SI-3(10)}
|
The verifiable process should also include a cross reference to mission objectives and impact statements. Understanding the flaws discovered and how they correlate to mission objectives will aid in prioritization.
|
The [organization] shall verify that the scope of security testing/evaluation provides complete coverage of required security controls (to include abuse cases and penetration testing) at the depth of testing defined in the test documents.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,RA-5(3),SA-11(5),SA-11(7)}
|
* The frequency of testing should be driven by Program completion events and updates.
* Examples of approaches are static analyses, dynamic analyses, binary analysis, or a hybrid of the three approaches
|
The [organization] shall maintain evidence of the execution of the security assessment plan and the results of the security testing/evaluation.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11}
|
|
The [organization] shall create and implement a security assessment plan that includes: (1) The types of analyses, testing, evaluation, and reviews of all software and firmware components; (2) The degree of rigor to be applied to include abuse cases and/or penetration testing; and (3) The types of artifacts produced during those processes.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11,SA-11(5)}
|
The security assessment plan should include evaluation of mission objectives in relation to the security of the mission. Assessments should not only be control based but also functional based to ensure mission is resilient against failures of controls.
|
The [organization] shall coordinate penetration testing on mission critical spacecraft components (hardware and/or software).{SV-MA-4}{CA-8,CA-8(1),CP-4(5)}
|
Not all defects (i.e., buffer overflows, race conditions, and memory leaks) can be discovered statically and require execution of the system. This is where space-centric cyber testbeds (i.e., cyber ranges) are imperative as they provide an environment to maliciously attack components in a controlled environment to discover these undesirable conditions. Technology has improved to where digital twins for spacecraft are achievable, which provides an avenue for cyber testing that was often not performed due to perceived risk to the flight hardware.
|
The [organization] shall employ dynamic analysis (e.g.using simulation, penetration testing, fuzzing, etc.) to identify software/firmware weaknesses and vulnerabilities in developed and incorporated code (open source, commercial, or third-party developed code).{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-8,CM-10(1),RA-3(1),SA-11(5),SA-11(8),SA-11(9),SI-3,SI-7(10)}
|
|
The [organization] shall establish robust procedures and technical methods to perform testing to include adversarial testing (i.e.abuse cases) of the platform hardware and software.{CA-8,CP-4(5),RA-5,RA-5(1),RA-5(2),SA-3,SA-4(3),SA-11,SA-11(1),SA-11(2),SA-11(5),SA-11(7),SA-11(8),SA-15(7)}
|
|
The [organization] shall define processes and procedures to be followed when integrity verification tools detect unauthorized changes to software, firmware, and information.{SV-IT-2}{CM-3,CM-3(1),CM-3(5),CM-5(6),CM-6,CP-2,IR-6,IR-6(2),PM-30,SC-16(1),SC-51,SI-3,SI-4(7),SI-4(24),SI-7,SI-7(7),SI-7(10)}
|
|
The [organization] shall develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including support tamper resistance and provide a level of protection against the introduction of malicious code or hardware.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CM-3(8),CM-7(9),PM-30,SA-8(9),SA-8(11),SA-9,SA-10(3),SA-19,SC-51,SR-4(3),SR-4(4),SR-5(2),SR-11}
|
|
The [organization] shall define policy and procedures to ensure that the developed or delivered systems do not embed unencrypted static authenticators in applications, access scripts, configuration files, nor store unencrypted static authenticators on function keys.{SV-AC-1,SV-AC-3}{IA-5(7)}
|
|
The [organization] shall have a two-man rule to achieve a high level of security for systems with command level access to the spacecraft.(Under this rule all access and actions require the presence of two authorized people at all times.) {SV-AC-4}{PE-3}
|
Note: These are not spacecraft requirements but important to call out but likely are covered under other requirements by the customer.
|
The [organization] shall have Insider Threat Program to aid in the prevention of people with authorized access to perform malicious activities.{SV-AC-4}{PM-12,AT-2(2),IR-4(7)}
|
Note: These are not spacecraft requirements but important to call out but likely are covered under other requirements by the customer.
|
The [organization], upon termination of individual employment, disables information system access within [TBD minutes] of termination.{SV-AC-4}{PS-4}
|
|
The [organization] shall require subcontractors developing information system components or providing information system services (as appropriate) to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)}
|
Select the particular subcontractors, software vendors, and manufacturers based on the criticality analysis performed for the Program Protection Plan and the criticality of the components that they supply.
|
The [organization] shall use a certified environment to develop, code and test executable software (firmware or bit-stream) that will be programmed into a one-time programmable FPGA or be programmed into non-volatile memory (NVRAM) that the FPGA executes.{SA-8(9),SA-8(11),SA-12,SA-12(1),SC-51,SI-7(10),SR-1,SR-5}
|
|
The [organization] shall enable integrity verification of hardware components.{SA-10(3),SA-8(21),SA-10(3),SC-51}
|
* The integrity verification mechanisms may include:
** Stipulating and monitoring logical delivery of products and services, requiring downloading from approved, verification-enhanced sites;
** Encrypting elements (software, software patches, etc.) and supply chain process data in transit (motion) and at rest throughout delivery;
** Requiring suppliers to provide their elements “secure by default”, so that additional configuration is required to make the element insecure;
** Implementing software designs using programming languages and tools that reduce the likelihood of weaknesses;
** Implementing cryptographic hash verification; and
** Establishing performance and sub-element baseline for the system and system elements to help detect unauthorized tampering/modification during repairs/refurbishing.
** Stipulating and monitoring logical delivery of products and services, requiring downloading from approved, verification-enhanced sites;
** Encrypting elements (software, software patches, etc.) and supply chain process data in transit (motion) and at rest throughout delivery;
** Requiring suppliers to provide their elements “secure by default”, so that additional configuration is required to make the element insecure;
** Implementing software designs using programming languages and tools that reduce the likelihood of weaknesses;
** Implementing cryptographic hash verification; and
** Establishing performance and sub-element baseline for the system and system elements to help detect unauthorized tampering/modification during repairs/refurbishing.
|
The [organization] shall have physical security controls to prevent unauthorized access to the systems that have the ability to command the spacecraft.{SV-AC-4}{PE-3}
|
Note: These are not spacecraft requirements but important to call out but likely are covered under other requirements by the customer.
|
For FPGA pre-silicon artifacts that are developed, coded, and tested by a developer that is not accredited, the [organization] shall be subjected to a development environment and pre-silicon artifacts risk assessment by [organization]. Based on the results of the risk assessment, the [organization] may need to implement protective measures or other processes to ensure the integrity of the FPGA pre-silicon artifacts.{SV-SP-5}{SA-3,SA-3(1),SA-8(9),SA-8(11),SA-12,SA-12(1),SR-1,SR-5}
|
DOD-I-5200.44 requires the following:
4.c.2 “Control the quality, configuration, and security of software, firmware, hardware, and systems throughout their lifecycles... Employ protections that manage risk in the supply chain… (e.g., integrated circuits, field-programmable gate arrays (FPGA), printed circuit boards) when they are identifiable (to the supplier) as having a DOD end-use. “ 4.e “In applicable systems, integrated circuit-related products and services shall be procured from a Trusted supplier accredited by the Defense Microelectronics Activity (DMEA) when they are custom-designed, custommanufactured, or tailored for a specific DOD military end use (generally referred to as application-specific integrated circuits (ASIC)). “ 1.g “In coordination with the DOD CIO, the Director, Defense Intelligence Agency (DIA), and the Heads of the DOD Components, develop a strategy for managing risk in the supply chain for integrated circuit-related products and services (e.g., FPGAs, printed circuit boards) that are identifiable to the supplier as specifically created or modified for DOD (e.g., military temperature range, radiation hardened).
|
The [organization] shall require the developer of the system, system component, or system services to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)}
|
Examples of good security practices would be using defense-in-depth tactics across the board, least-privilege being implemented, two factor authentication everywhere possible, using DevSecOps, implementing and validating adherence to secure coding standards, performing static code analysis, component/origin analysis for open source, fuzzing/dynamic analysis with abuse cases, etc.
|
The [organization] should have requirements/controls for all ground/terrestrial systems covering: Data Protection, Ground Software, Endpoints, Networks, Computer Network Defense / Incident Response, Perimeter Security, Physical Controls, and Prevention Program (SSP, PPP, and Training).See NIST 800-53 and CNSSI 1253 for guidance on ground security {SV-MA-7}
|
|
The [spacecraft] shall terminate the connection associated with a communications session at the end of the session or after 3 minutes of inactivity.{SV-AC-1}{AC-12,SA-8(18),SC-10,SC-23(1),SC-23(3),SI-14,SI-14(3)}
|
|
The [spacecraft] shall protect authenticator content from unauthorized disclosure and modification.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),IA-5,IA-5(6),RA-5(4),SA-8(18),SA-8(19),SC-28(3)}
|
|
The [spacecraft] encryption key handling shall be handled outside of the onboard software and protected using cryptography.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(1),SC-28(3)}
|
|
The [spacecraft] encryption keys shall be restricted so that the onboard software is not able to access the information for key readout.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
|
|
The [spacecraft] encryption keys shall be restricted so that they cannot be read via any telecommands.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
|
|
The [spacecraft] shall produce, control, and distribute symmetric cryptographic keys using NSA Certified or Approved key management technology and processes per CNSSP 12.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-9(6),SC-12,SC-12(1),SC-12(2),SC-12(3)}
|
|
The [spacecraft] shall provide the capability to restrict command lock based on geographic location of ground stations.{SV-AC-1}{AC-2(11),IA-10,SI-4(13),SI-4(25)}
|
This could be performed using command lockout based upon when the spacecraft is over selected regions. This should be configurable so that when conflicts arise, the Program can update. The goal is so the spacecraft won't accept a command when the spacecraft determines it is in a certain region.
|
The [spacecraft] shall restrict the use of information inputs to spacecraft and designated ground stations as defined in the applicable ICDs.{SV-AC-1,SV-AC-2}{AC-20,SC-23,SI-10,SI-10(5),SI-10(6)}
|
|
The [spacecraft] shall uniquely identify and authenticate the ground station and other spacecraft before establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(10),AC-20,IA-3,IA-4,SA-8(18),SI-3(9)}
|
|
The [spacecraft] shall authenticate the ground station (and all commands) and other spacecraft before establishing remote connections using bidirectional authentication that is cryptographically based.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(2),AC-17(10),AC-18(1),AC-20,IA-3(1),IA-4,IA-4(9),IA-7,IA-9,SA-8(18),SA-8(19),SA-9(2),SC-7(11),SC-16(1),SC-16(2),SC-16(3),SC-23(3),SI-3(9)}
|
Authorization can include embedding opcodes in command strings, using trusted authentication protocols, identifying proper link characteristics such as emitter location, expected range of receive power, expected modulation, data rates, communication protocols, beamwidth, etc.; and tracking command counter increments against expected values.
|
The [spacecraft] shall implement relay and replay-resistant authentication mechanisms for establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,IA-2(8),IA-2(9),SA-8(18),SC-8(1),SC-16(1),SC-16(2),SC-23(3),SC-40(4)}
|
|
The [spacecraft] shall not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode).{SV-AC-1,SV-CF-1,SV-CF-2}{AC-3(10),SA-8(18),SA-8(19),SC-16(2),SC-16(3),SC-40(4)}
|
|
The [spacecraft] shall enforce approved authorizations for controlling the flow of information within the platform and between interconnected systems so that information does not leave the platform boundary unless it is encrypted.{SV-AC-6}{AC-3(3),AC-3(4),AC-4,AC-4(6),AC-4(21),CA-3,CA-3(6),CA-3(7),CA-9,IA-9,SA-8(19),SC-8(1),SC-16(3)}
|
|
All [spacecraft] commands which have unrecoverable consequence must have dual authentication prior to command execution.{AU-9(5),IA-3,IA-4,IA-10,PE-3,PM-12,SA-8(15),SA-8(21),SC-16(2),SC-16(3),SI-3(8),SI-3(9),SI-4(13),SI-4(25),SI-7(12),SI-10(6),SI-13}
|
|
The [spacecraft] shall have a method to ensure the integrity of these commands and validate their authenticity before execution.{AU-9(5),IA-3,IA-4,IA-10,PE-3,PM-12,SA-8(15),SA-8(21),SC-16(2),SC-16(3),SI-3(8),SI-3(9),SI-4(13),SI-4(25),SI-7(12),SI-10(6),SI-13}
|
|
The [organization] shall employ automated tools that provide notification to ground operators upon discovering discrepancies during integrity verification.{CM-3(5),CM-6,IR-6,IR-6(2),SA-8(21),SC-51,SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(2)}
|
|
The [spacecraft] shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution).{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2}{CP-13,SA-8(19),SA-8(24),SC-7(18),SI-13,SI-13(4)}
|
|
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards: [NSA- certified or approved cryptography for protection of classified information, FIPS-validated cryptography for the provision of hashing].{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2,SV-AC-3}{IA-7,SC-13}
|
|
The [organization] shall implement a security architecture and design that provides the required security functionality, allocates security controls among physical and logical components, and integrates individual security functions, mechanisms, and processes together to provide required security capabilities and a unified approach to protection.{SV-MA-6}{PL-7,SA-2,SA-8,SA-8(1),SA-8(2),SA-8(3),SA-8(4),SA-8(5),SA-8(6),SA-8(7),SA-8(9),SA-8(11),SA-8(13),SA-8(19),SA-8(29),SA-8(30),SC-32,SC-32(1)}
|
|
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
|
The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management.
|
The [spacecraft] shall provide the capability for data connection ports or input/output devices to be disabled or removed prior to spacecraft operations.{SV-AC-5}{SA-9(2),SC-7(14),SC-41,SC-51}
|
Intent is for external physical data ports to be disabled (logical or physical) while in operational orbit. Port disablement does not necessarily need to be irreversible.
|
The [organization] shall use NIST Approved for symmetric key management for Unclassified systems; NSA Approved or stronger symmetric key management technology for Classified systems.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(2)}
|
FIPS-complaint technology used by the Program shall include (but is not limited to) cryptographic key generation algorithms or key distribution techniques that are either a) specified in a FIPS, or b) adopted in a FIPS and specified either in an appendix to the FIPS or in a document referenced by the FIPS.
NSA-approved technology used for symmetric key management by the Program shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.
|
The [organization] shall use NSA approved key management technology and processes.NSA-approved technology used for asymmetric key management by The [organization] shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)}
|
|
The [spacecraft] shall produce, control, and distribute asymmetric cryptographic keys using [organization]-defined asymmetric key management processes.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)}
|
In most cased the Program will leverage NSA-approved key management technology and processes.
|
The [spacecraft] shall monitor [Program defined telemetry points] for malicious commanding attempts.{SV-AC-1,SV-AC-2}{SC-7,AU-3(1),AC-17(1)}
|
Source from AEROSPACE REPORT NO. TOR-2019-02178
Vehicle Command Counter (VCC) - Counts received valid commands
Rejected Command Counter - Counts received invalid commands
Command Receiver On/Off Mode - Indicates times command receiver is accepting commands
Command Receivers Received Signal Strength - Analog measure of the amount of received RF energy at the receive frequency
Command Receiver Lock Modes - Indicates when command receiver has achieved lock on command signal
Telemetry Downlink Modes - Indicates when the satellite’s telemetry was transmitting
Cryptographic Modes - Indicates the operating modes of the various encrypted links
Received Commands - Log of all commands received and executed by the satellite
System Clock - Master onboard clock
GPS Ephemeris - Indicates satellite location derived from GPS Signals
|