Threat actors may gain access to a victim spacecraft by masquerading as an authorized entity. This can be done several ways, including through the manipulation of command headers, spoofing locations, or even leveraging Insider's access (i.e., Insider Threat)
Establish policy and procedures to prevent individuals (i.e., insiders) from masquerading as individuals with valid access to areas where commanding of the spacecraft is possible. Establish an Insider Threat Program to aid in the prevention of people with authorized access performing malicious activities.
Utilize a two-person system to achieve a high level of security for systems with command level access to the spacecraft. Under this rule all access and actions require the presence of two authorized people at all times.
A component of cybersecurity to deny unauthorized persons information derived from telecommunications and to ensure the authenticity of such telecommunications. COMSEC includes cryptographic security, transmission security, emissions security, and physical security of COMSEC material. It is imperative to utilize secure communication protocols with strong cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission. Systems should also maintain the confidentiality and integrity of information during preparation for transmission and during reception. Spacecraft should not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). The cryptographic mechanisms should identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters.
Leverage best practices for crypto key management as defined by organization like NIST or the National Security Agency. Leverage only approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria. Encryption key handling should be performed outside of the onboard software and protected using cryptography. Encryption keys should be restricted so that they cannot be read via any telecommands.
Authenticate all communication sessions (crosslink and ground stations) for all commands before establishing remote connections using bidirectional authentication that is cryptographically based. Adding authentication on the spacecraft bus and communications on-board the spacecraft is also recommended.
Provide additional protection modes for commanding the spacecraft. These can be where the spacecraft will restrict command lock based on geographic location of ground stations, special operational modes within the flight software, or even temporal controls where the spacecraft will only accept commands during certain times.
This countermeasure is focused on the protection of terrestrial assets like ground networks and development environments/contractor networks, etc. Traditional detection technologies and capabilities would be applicable here. Utilizing resources from NIST CSF to properly secure these environments using identify, protect, detect, recover, and respond is likely warranted. Additionally, NISTIR 8401 may provide resources as well since it was developed to focus on ground-based security for space systems (https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8401.ipd.pdf). Furthermore, the MITRE ATT&CK framework provides IT focused TTPs and their mitigations https://attack.mitre.org/mitigations/enterprise/. Several recommended NIST 800-53 Rev5 controls are provided for reference when designing ground systems/networks.
Monitor defined telemetry points for malicious activities (i.e., jamming attempts, commanding attempts (e.g., command modes, counters, etc.)). This would include valid/processed commands as well as commands that were rejected. Telemetry monitoring should synchronize with ground-based Defensive Cyber Operations (i.e., SIEM/auditing) to create a full space system situation awareness from a cybersecurity perspective.
Employ physical security controls (badge with pins, guards, gates, etc.) to prevent unauthorized access to the systems that have the ability to command the spacecraft.