Reinforcement Learning

Institute a reinforcement learning agent that will detect anomalous events and redirect processes to proceed by ignoring malicious data/input.

Sources

Best Segment for Countermeasure Deployment

  • Space Segment

NIST Rev5 Controls

D3FEND

ISO 27001

ID: CM0068
D3FEND Artifacts: 
Created: 2022/10/19
Last Modified: 2022/10/19

Techniques Addressed by Countermeasure

here here here here here here here here here
ID Name Description
EX-0013 Flooding Threat actors use jamming and flooding attacks to disrupt communications by injecting unexpected noise or messages into a transmission channel. There are several types of attacks that are consistent with this method of exploitation, and they can produce various outcomes. Although, the most prominent of the impacts are denial of service or data corruption. Several elements of the space vehicle may be targeted by jamming and flooding attacks, and depending on the time of the attack, it can have devastating results to the availability of the system.
.02 Erroneous Data Threat actors inject noise into the target channel so that legitimate messages cannot be correctly processed due to data integrity impacts. Additionally, while this technique does not utilize valid commands, the target SV still must consume computing resources to process and discard the signal.
.01 Valid Commands Threat actors may utilize valid commanding as a mechanism for flooding as the processing of these valid commands could expend valuable resources like processing power and battery usage. Flooding the spacecraft bus, sub-systems or link layer with valid commands can create temporary denial of service conditions for the space vehicle while the SV is consumed with processing these valid commands.

Space Threats Addressed by Countermeasure

ID Description

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The [spacecraft] shall monitor security relevant telemetry points for malicious commanding attempts.{AC-17,AC-17(1),AC-17(10),AU-3(1),RA-10,SC-7,SC-16,SC-16(2),SC-16(3),SI-3(8),SI-4,SI-4(1),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
The [spacecraft] shall monitor and collect all onboard cyber-relevant data (from multiple system components), including identification of potential attacks and sufficient information about the attack for subsequent analysis.{SV-DCO-1}{AC-6(9),AC-20,AC-20(1),AU-2,AU-12,IR-4,IR-4(1),RA-10,SI-3,SI-3(10),SI-4,SI-4(1),SI-4(2),SI-4(7),SI-4(24)} The spacecraft will monitor and collect data that provides accountability of activity occurring onboard the spacecraft. Due to resource limitations on the spacecraft, analysis must be performed to determine which data is critical for retention and which can be filtered. Full system coverage of data and actions is desired as an objective; it will likely be impractical due to the resource limitations. “Cyber-relevant data” refers to all data and actions deemed necessary to support accountability and awareness of onboard cyber activities for the mission. This would include data that may indicate abnormal activities, critical configuration parameters, transmissions on onboard networks, command logging, or other such data items. This set of data items should be identified early in the system requirements and design phase. Cyber-relevant data should support the ability to assess whether abnormal events are unintended anomalies or actual cyber threats. Actual cyber threats may rarely or never occur, but non-threat anomalies occur regularly. The ability to filter out cyber threats for non-cyber threats in relevant time would provide a needed capability. Examples could include successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels).
The [spacecraft] shall alert in the event of the audit/logging processing failures.{AU-5,AU-5(1),AU-5(2),SI-3,SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(24)}
The [spacecraft] shall provide an alert immediately to [at a minimum the mission director, administrators, and security officers] when the following failure events occur: [minimally but not limited to: auditing software/hardware errors; failures in the audit capturing mechanisms; and audit storage capacity reaching 95%, 99%, and 100%] of allocated capacity.{SV-DCO-1}{AU-5,AU-5(1),AU-5(2),SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(24),SI-7(7)} Intent is to have human on the ground be alerted to failures. This can be decomposed to SV to generate telemetry and to Ground to alert.
The [spacecraft] shall provide the capability of a cyber “black-box” to capture necessary data for cyber forensics of threat signatures and anomaly resolution when cyber attacks are detected.{SV-DCO-1}{AU-5(5),AU-9(2),AU-9(3),AU-12,IR-4(12),IR-4(13),IR-5(1),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(7),SI-4(24),SI-7(7)} Similar concept of a "black box" on an aircraft where all critical information is stored for post forensic analysis. Black box can be used to record CPU utilization, GNC physical parameters, audit records, memory contents, TT&C data points, etc. The timeframe is dependent upon implementation but needs to meet the intent of the requirement. For example, 30 days may suffice.
The [organization] shall integrate terrestrial system audit log analysis as part of the standard anomaly resolution process to correlate any anomalous behavior in the terrestrial systems that correspond to anomalous behavior in the spacecraft.{SV-DCO-1}{AU-6(1),IR-5(1)}
The [spacecraft] shall be able to locate the onboard origin of a cyber attack and alert ground operators within 3 minutes.{SV-DCO-1}{IR-4,IR-4(1),IR-4(12),IR-4(13),RA-10,SA-8(22),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(16),SI-4(24)} The origin of any attack onboard the vehicle should be identifiable to support mitigation. At the very least, attacks from critical element (safety-critical or higher-attack surface) components should be locatable quickly so that timely action can occur.
The [spacecraft] shall detect and deny unauthorized outgoing communications posing a threat to the spacecraft.{SV-DCO-1}{IR-4,IR-4(1),RA-5(4),RA-10,SC-7(9),SC-7(10),SI-4,SI-4(1),SI-4(4),SI-4(7),SI-4(11),SI-4(13),SI-4(24),SI-4(25)}
The [spacecraft] shall provide cyber threat status to the ground segment for the Defensive Cyber Operations team, per the governing specification.{SV-DCO-1}{IR-5,PM-16,PM-16(1),RA-3(3),RA-10,SI-4,SI-4(1),SI-4(24),SI-7(7)} The future space enterprises will include full-time Cyber Defense teams supporting space mission systems. Their work is currently focused on the ground segment but may eventually require specific data from the space segment for their successful operation. This requirement is a placeholder to ensure that any DCO-related requirements are taken into consideration for this document.
The [spacecraft] shall be designed and configured so that encrypted communications traffic and data is visible to on-board security monitoring tools.{SV-DCO-1}{RA-10,SA-8(21),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(10),SI-4(13),SI-4(24),SI-4(25)}
The [spacecraft] shall be designed and configured so that spacecraft memory can be monitored by the on-board intrusion detection/prevention capability.{SV-DCO-1}{RA-10,SA-8(21),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(24),SI-16}
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)} The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management.