The [spacecraft] shall maintain the confidentiality and integrity of information during preparation for transmission and during reception.{SV-AC-7}{AC-3,SA-8(19),SC-8,SC-8(1),SC-8(2),SC-16,SC-16(1)}
|
* Preparation for transmission and during reception includes the aggregation, packing, and transformation options performed prior to transmission and the undoing of those operations that occur upon receipt.
|
The [spacecraft] shall encrypt all telemetry on downlink regardless of operating mode to protect current state of spacecraft.{SV-CF-4}{AC-3(10),RA-5(4),SA-8(18),SA-8(19),SC-8,SC-8(1),SC-13}
|
|
The [spacecraft] shall enter a cyber-safe mode when conditions that threaten the platform are detected, enters a cyber-safe mode of operation with restrictions as defined based on the cyber-safe mode.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4,IR-4(1),IR-4(3),PE-10,RA-10,SA-8(16),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-13,SI-17}
|
|
The [spacecraft] shall provide the capability to enter the platform into a known good, operational cyber-safe mode from a tamper-resistant, configuration-controlled (“gold”) image that is authenticated as coming from an acceptable supplier, and has its integrity verified.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4(3),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-13,SI-17}
|
Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and SW functions to preattack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on available equipment still available after a cyberattack. The goal is for the vehicle to resume full mission operations. If not possible, a reduced level of mission capability should be achieved.
|
The [spacecraft] shall fail to a known secure state for failures during initialization, and aborts preserving information necessary to return to operations in failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(24),SC-24,SI-13,SI-17}
|
|
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards: [NSA- certified or approved cryptography for protection of classified information, FIPS-validated cryptography for the provision of hashing].{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2,SV-AC-3}{IA-7,SC-13}
|
|
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with CNSSP 12 and applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{IA-7,SC-8(1),SC-13,SI-12}
|
|
The [spacecraft] shall maintain the confidentiality and integrity of information during preparation for transmission and during reception in accordance with [organization] provided encryption matrix.{SA-8(19),SC-8,SC-8(1),SC-8(2),SC-8(3)}
|
* Preparation for transmission and during reception includes the aggregation, packing, and transformation options performed prior to transmission and the undoing of those operations that occur upon receipt.
|
The [spacecraft] shall protect the confidentiality and integrity of all transmitted information.{SV-IT-2,SV-AC-7}{SC-8}
|
* The intent as written is for all transmitted traffic to be protected. This includes internal to internal communications and especially outside of the boundary.
|