Backdoor: Software

Threat actors may inject code to create their own backdoor to establish persistent access to the SV. This may be done through modification of code throughout the software supply chain or through modification of the software-defined radio configuration (if applicable).

ID: CM0043
Sub-technique of:  PER-0002
Related Aerospace Threat IDs:  SV-SP-1 | SV-SP-3 | SV-SP-9
Related MITRE ATT&CK TTPs:  T1195 | T1195.002
Tactic:
Created: 2022/10/19
Last Modified: 2022/10/19

Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001
CM0001 Protect Sensitive Information Organizations should look to identify and properly classify mission sensitive design/operations information (e.g., fault management approach) and apply access control accordingly. Any location (ground system, contractor networks, etc.) storing design information needs to ensure design info is protected from exposure, exfiltration, etc. Space system sensitive information may be classified as Controlled Unclassified Information (CUI) or Company Proprietary. Space system sensitive information can typically include a wide range of candidate material: the functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, CUI, proprietary, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission. Sensitive documentation should only be accessed by personnel with defined roles and a need to know. Well established access controls (roles, encryption at rest and transit, etc.) and data loss prevention (DLP) technology are key countermeasures. The DLP should be configured for the specific data types in question. AC-3(11) AC-4(23) AC-4(25) CM-12 CM-12(1) PM-11 PM-17 SA-3(1) SA-3(2) SA-4(12) SA-5 SA-9(7) SI-21 SI-23 SR-12 SR-7 A.8.4 A.8.11 A.8.10 A.8.33 7.5.1 7.5.2 7.5.3 A.5.37 A.8.10 A.5.22
CM0009 Threat Intelligence Program A threat intelligence program helps an organization generate their own threat intelligence information and track trends to inform defensive priorities and mitigate risk. Leverage all-source intelligence services or commercial satellite imagery to identify and track adversary infrastructure development/acquisition. Countermeasures for this attack fall outside the scope of the mission in the majority of cases. PM-16 PM-16(1) PM16(1) RA-10 RA-3(2) RA-3(3) SR-8 A.5.7 A.5.7 A.5.7
CM0020 Threat modeling Use threat modeling and vulnerability analysis to inform the current development process using analysis from similar systems, components, or services where applicable. SA-11(2) SA-15(8)
CM0022 Criticality Analysis Conduct a criticality analysis to identify mission critical functions, critical components, and data flows and reduce the vulnerability of such functions and components through secure system design. Focus supply chain protection on the most critical components/functions. Leverage other countermeasures like segmentation and least privilege to protect the critical components. CP-2(8) PM-11 PM-17 PM-30 PM-30(1) PM-32 RA-3(1) RA-9 RA-9 SA-15(3) SC-32(1) SC-7(29) SR-1 SR-1 SR-2 SR-2(1) SR-3 SR-3(2) SR-3(3) SR-5(1) SR-7 A.5.30 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.22 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.22
CM0004 Development Environment Security In order to secure the development environment, the first step is understanding all the devices and people who interact with it. Maintain an accurate inventory of all people and assets that touch the development environment. Ensure strong multi-factor authentication is used across the development environment, especially for code repositories, as threat actors may attempt to sneak malicious code into software that's being built without being detected. Use zero-trust access controls to the code repositories where possible. For example, ensure the main branches in repositories are protected from injecting malicious code. A secure development environment requires change management, privilege management, auditing and in-depth monitoring across the environment. AC-20(5) AC-3(11) AC-3(13) AC-3(15) CA-8 CM-14 CM-2(2) CM-3(2) CM-3(7) CM-3(8) CM-4(1) CM-7(8) CM-7(8) CP-2(8) MA-7 PL-8(2) PM-30 PM-30(1) RA-3(1) RA-3(2) RA-5 RA-5(2) RA-9 SA-10 SA-11 SA-11(1) SA-11(2) SA-11(2) SA-11(4) SA-11(5) SA-11(5) SA-11(6) SA-11(7) SA-11(7) SA-11(8) SA-15 SA-15(3) SA-15(5) SA-15(7) SA-15(8) SA-3 SA-3(1) SA-3(2) SA-4(3) SA-4(5) SC-38 SI-2 SI-2(6) SR-1 SR-1 SR-11 SR-2 SR-2(1) SR-3 SR-3(2) SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5 SR-5(2) SR-6 SR-6(1) SR-6(1) SR-7 A.8.4 A.8.9 A.8.9 A.8.31 A.5.30 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.8.8 A.5.22 A.5.2 A.5.8 A.8.25 A.8.31 A.8.33 A.8.28 A.8.9 A.8.28 A.8.30 A.8.32 A.8.29 A.8.30 A.8.28 A.5.8 A.8.25 A.8.28 A.6.8 A.8.8 A.8.32 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29 A.5.22 A.5.22
CM0007 Software Version Numbers When using COTS or Open-Source, protect the version numbers being used as these numbers can be cross referenced against public repos to identify Common Vulnerability Exposures (CVEs) and exploits available. AC-3(11) SA-5 A.8.4 7.5.1 7.5.2 7.5.3 A.5.37
CM0010 Update Software Perform regular software updates to mitigate exploitation risk. Software updates may need to be scheduled around operational down times. Release updated versions of the software/firmware systems incorporating security-relevant updates, after suitable regression testing, at a frequency no greater than mission-defined frequency [i.e., 90 days]. CM-3(2) CM-3(7) CM-3(8) CM-4(1) SI-2 A.8.9 A.8.9 A.8.31 A.6.8 A.8.8 A.8.32
CM0011 Vulnerability Scanning Vulnerability scanning is used to identify known software vulnerabilities (excluding custom-developed software - ex: COTS and Open-Source). Utilize scanning tools to identify vulnerabilities in dependencies and outdated software (i.e., software composition analysis). Ensure that vulnerability scanning tools and techniques are employed that facilitate interoperability among tools and automate parts of the vulnerability management process by using standards for: (1) Enumerating platforms, custom software flaws, and improper configurations; (2) Formatting checklists and test procedures; and (3) Measuring vulnerability impact. CM-10(1) RA-5 RA-5(11) SA-15(7) A.8.8
CM0012 Software Bill of Materials Generate Software Bill of Materials (SBOM) against the entire software supply chain and cross correlate with known vulnerabilities (e.g., Common Vulnerabilities and Exposures) to mitigate known vulnerabilities. Protect the SBOM according to countermeasures in CM0001. CM-10(1) CM-11(3) CM-8 CM-8(7) RA-5(11) A.5.9 A.8.9
CM0013 Dependency Confusion Ensure proper protections are in place for ensuring dependency confusion is mitigated like ensuring that internal dependencies be pulled from private repositories vice public repositories, ensuring that your CI/CD/development environment is secure as defined in CM0004 and validate dependency integrity by ensuring checksums match official packages. CM-10(1) RA-5 SA-8(9) A.8.8
CM0015 Software Source Control Prohibit the use of binary or machine-executable code from sources with limited or no warranty and without the provision of source code. CM-14 CM-7(8)
CM0016 CWE List Create prioritized list of software weakness classes (e.g., Common Weakness Enumerations), based on system-specific considerations, to be used during static code analysis for prioritization of static analysis results. RA-5 SA-11(1) SA-15(7) A.8.8 A.8.28
CM0017 Coding Standard Define acceptable coding standards to be used by the software developer. The mission should have automated means to evaluate adherence to coding standards. SA-15 A.5.8 A.8.25
CM0018 Dynamic Analysis Employ dynamic analysis (e.g., using simulation, penetration testing, fuzzing, etc.) to identify software/firmware weaknesses and vulnerabilities in developed and incorporated code (open source, commercial, or third-party developed code). Testing should occur (1) on potential system elements before acceptance; (2) as a realistic simulation of known adversary tactics, techniques, procedures (TTPs), and tools; and (3) throughout the lifecycle on physical and logical systems, elements, and processes. CA-8 CP-4(5) RA-5(11) SA-11(5) SA-11(8) SA-11(9) SC-2(2) SC-7(29) SR-6(1) SR-6(1)
CM0019 Static Analysis Perform static source code analysis for all available source code looking for system-relevant weaknesses (see CM0016) using no less than two static code analysis tools. RA-5 SA-11(1) SA-15(7) A.8.8 A.8.28
CM0021 Software Digital Signature Prevent the installation of Flight Software without verification that the component has been digitally signed using a certificate that is recognized and approved by the mission. CM-11(3) CM-14 CM-14 SA-10(1) SI-7 SI-7(12)
CM0023 Configuration Management Use automated mechanisms to maintain and validate baseline configuration to ensure the spacecraft's is up-to-date, complete, accurate, and readily available. CM-11(3) CM-3(7) CM-3(8) MA-7 SA-10 SA-10(7) SR-11(2) A.8.9 A.8.9 A.8.9 A.8.28 A.8.30 A.8.32
CM0032 On-board Intrusion Detection & Prevention Utilize on-board intrusion detection/prevention system that monitors the mission critical components or systems and audit/logs actions. The IDS/IPS should have the capability to respond to threats and it should address signature-based attacks along with dynamic never-before seen attacks using machine learning/adaptive technologies. The IDS/IPS must integrate with traditional fault management to provide a wholistic approach to faults on-board the spacecraft. Spacecraft should select and execute safe countermeasures against cyber-attacks.  These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker — with or without ground support. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system. AU-14 AU-2 AU-3 AU-3(1) AU-4 AU-4(1) AU-5 AU-5(2) AU-5(5) AU-6(1) AU-6(4) AU-8 AU-9 AU-9(2) AU-9(3) CA-7(6) CM-11(3) CP-10 CP-10(4) IR-4 IR-4(11) IR-4(12) IR-4(14) IR-5 IR-5(1) RA-10 RA-3(4) SA-8(21) SA-8(22) SA-8(23) SC-16(2) SC-32(1) SC-5(3) SC-7(9) SI-10(6) SI-16 SI-17 SI-4 SI-4(10) SI-4(11) SI-4(16) SI-4(2) SI-4(25) SI-4(4) SI-4(5) SI-6 SI-7(17) SI-7(8) A.8.15 A.8.15 A.8.6 A.8.17 A.5.33 A.8.15 A.8.15 A.5.29 A.5.25 A.5.26 A.5.27 A.5.7 A.8.16 A.8.16 A.8.16
CM0044 Cyber-safe Mode Provide the capability to enter the spacecraft into a configuration-controlled and integrity-protected state representing a known, operational cyber-safe state (e.g., cyber-safe mode). Spacecraft should enter a cyber-safe mode when conditions that threaten the platform are detected.   Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode, authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and software functions to pre-attack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on equipment still available after a cyber-attack. The goal is for the spacecraft to resume full mission operations. If not possible, a reduced level of mission capability should be achieved. Cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.                                                  CP-10 CP-10(4) CP-12 CP-2(5) IR-4 IR-4(12) IR-4(3) SA-8(21) SA-8(23) SA-8(24) SC-16(2) SC-24 SI-11 SI-17 SI-7(17) A.5.29 A.5.25 A.5.26 A.5.27
CM0014 Secure boot Software/Firmware must verify a trust chain that extends through the hardware root of trust, boot loader, boot configuration file, and operating system image, in that order. The trusted boot/RoT computing module should be implemented on radiation tolerant burn-in (non-programmable) equipment.  SC-51 SI-7(9)
CM0043 Backdoor Commands Ensure that all viable commands are known to the mission/spacecraft owner. Perform analysis of critical (backdoor/hardware) commands that could adversely affect mission success if used maliciously. Only use or include critical commands for the purpose of providing emergency access where commanding authority is appropriately restricted.  SI-10 SI-10(3) SI-10(6)

References