Replace Cryptographic Keys

Threat actors may attempt to fully replace the cryptographic keys on the space vehicle which could lockout the mission operators and enable the threat actor's communication channel. Once the encryption key is changed on the space vehicle, the SV is rendered inoperable from the operators perspective as they have lost commanding access. Threat actors may exploit weaknesses in the key management strategy. For example, the threat actor may exploit the over-the-air rekeying procedures to inject their own cryptographic keys.

ID: CM0042
Sub-techniques: 
Related Aerospace Threat IDs:  SV-AC-1 SV-AC-3
Related MITRE ATT&CK TTPs:  T1531
Tactic:
Created: 2022/10/19
Last Modified: 2022/10/19

Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001
CM0028 Tamper Protection Perform physical inspection of hardware to look for potential tampering. Leverage tamper proof protection where possible when shipping/receiving equipment. CA-8(3) CM-7(9) MA-7 PM-30 PM-30(1) RA-3(1) SC-51 SR-1 SR-1 SR-10 SR-11 SR-11(3) SR-2 SR-2(1) SR-3 SR-4(3) SR-4(4) SR-5 SR-5 SR-5(2) SR-6(1) SR-9 SR-9(1) 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.20 A.5.21 A.5.23 A.8.29
CM0002 COMSEC Utilizing secure communication protocols with strong cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission. Systems should also maintain the confidentiality and integrity of information during preparation for transmission and during reception. Spacecraft should not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). The cryptographic mechanisms should identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters. AC-17(1) AC-17(10) AC-17(10) AC-17(2) AC-18(1) AC-2(11) AC-3(10) IA-4(9) IA-5 IA-5(7) IA-7 SA-8(18) SA-9(6) SC-10 SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-13 SC-16(3) SC-28(1) SC-28(3) SC-7 SC-7(11) SC-7(18) SI-10 SI-10(3) SI-10(5) SI-10(6) SI-19(4) A.8.16 A.5.16 A.5.17 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.20 A.8.24 A.8.24 A.8.26 A.5.31 A.5.33 A.8.11
CM0030 Crypto Key Management Leverage best practices for crypto key management as defined by organization like NIST or the National Security Agency. Leverage only approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria. Encryption key handling should be performed outside of the onboard software and protected using cryptography. Encryption keys should be restricted so that they cannot be read via any telecommands. SA-9(6) SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-28(3) A.8.24
CM0032 On-board Intrusion Detection & Prevention Utilize on-board intrusion detection/prevention system that monitors the mission critical components or systems and audit/logs actions. The IDS/IPS should have the capability to respond to threats and it should address signature-based attacks along with dynamic never-before seen attacks using machine learning/adaptive technologies. The IDS/IPS must integrate with traditional fault management to provide a wholistic approach to faults on-board the spacecraft. Spacecraft should select and execute safe countermeasures against cyber-attacks.  These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker — with or without ground support. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system. AU-14 AU-2 AU-3 AU-3(1) AU-4 AU-4(1) AU-5 AU-5(2) AU-5(5) AU-6(1) AU-6(4) AU-8 AU-9 AU-9(2) AU-9(3) CA-7(6) CM-11(3) CP-10 CP-10(4) IR-4 IR-4(11) IR-4(12) IR-4(14) IR-5 IR-5(1) RA-10 RA-3(4) SA-8(21) SA-8(22) SA-8(23) SC-16(2) SC-32(1) SC-5(3) SC-7(9) SI-10(6) SI-16 SI-17 SI-4 SI-4(10) SI-4(11) SI-4(16) SI-4(2) SI-4(25) SI-4(4) SI-4(5) SI-6 SI-7(17) SI-7(8) A.8.15 A.8.15 A.8.6 A.8.17 A.5.33 A.8.15 A.8.15 A.5.29 A.5.25 A.5.26 A.5.27 A.5.7 A.8.16 A.8.16 A.8.16
CM0042 Robust Fault Management Ensure fault management system cannot be used against the spacecraft. Examples include: safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of telemetry to cause action from ground, or some sort of proximity operation to cause spacecraft to go into safe mode. Understanding the safing procedures and ensuring they do not put the spacecraft in a more vulnerable state is key to building a resilient spacecraft. CP-4(5) SA-8(24) SC-16(2) SC-24 SI-13 SI-17

References