CM0001

Eavesdropping (RF and proximity)


Informational References

ID: CM0001
DiD Layer: Data
CAPEC #:  117 | 619 | 623 | 651
NIST Rev5 Control Tag Mapping:  AC-3 | AC-3(10) | AC-4 | AC-4(23) | CA-3 | CA-3(7) | IA-7 | PE-19 | PE-19(1) | SA-3 | SA-3(1) | SA-8 | SA-8(18) | SC-7 | SC-7(18) | SC-13 | SC-28 | SC-28(1) | SI-7 | SI-7(6)
Lowest Threat Tier to
Create Threat Event:  
VI
Notional Risk Rank Score: 

High-Level Requirements

The spacecraft shall eliminate and then mitigate information leakage due to electromagnetic signals emanations.

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The spacecraft shall not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). {SV-AC-1,SV-CF-1,SV-CF-2} {AC-3(10)}
The spacecraft shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution). {SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2} {SC-7(18)}
The spacecraft shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards: [NSA- certified or approved cryptography for protection of classified information, FIPS-validated cryptography for the provision of hashing]. {SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2,SV-AC-3} {IA-7,SC-13} * Information at rest refers to the state of information when it is located on storage devices as specific components of information systems. This is often referred to as data-at-rest encryption.
The spacecraft shall protect the confidentiality and integrity of the [all information] using cryptography while it is at rest. {SV-IT-2,SV-CF-2} {SC-28,SC-28(1),SI-7(6)} This requirement applies if system components are being designed to address EMSEC and the measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements.
See threat ID SV-AC-1 for crypto and auth requirements. But to protect for TEMPEST. The spacecraft shall be designed such that it protects itself from information leakage due to electromagnetic signals emanations. {SV-CF-2,SV-MA-2} {PE-19,PE-19(1)} The measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements. The concerns addressed by this control during operation are emanations leakage between multiple payloads within a single space platform, and between payloads and the bus.
The spacecraft shall protect system components, associated data communications, and communication buses in accordance with: (i) national emissions and TEMPEST policies and procedures, and (ii) the security category or sensitivity of the transmitted information. {SV-CF-2,SV-MA-2} {PE-19,PE-19(1)}
The Program shall describe (a) the separation between RED and BLACK cables, (b) the filtering on RED power lines, (c) the grounding criteria for the RED safety grounds, (d) and the approach for dielectric separators on any potential fortuitous conductors. {SV-CF-2,SV-MA-2} {PE-19,PE-19(1)}

Related SPARTA Techniques and Sub-Techniques

ID Name Description
REC-0005 Eavesdropping Threat actors may seek to capture network communications throughout the ground station and radio frequency (RF) communication used for uplink and downlink communications. RF communication frequencies vary between 30MHz and 60 GHz. Threat actors may capture RF communications using specialized hardware, such as software defined radio (SDR), handheld radio, or a computer with radio demodulator turned to the communication frequency. Network communications may be captured using packet capture software while the threat actor is on the target network.
REC-0005.01 Uplink Intercept Threat actors may capture the RF communications as it pertains to the uplink to the victim SV. This information can contain commanding information that the threat actor can use to perform other attacks against the victim SV.
REC-0005.02 Downlink Intercept Threat actors may capture the RF communications as it pertains to the downlink of the victim SV. This information can contain important telemetry such as onboard status and mission data.
REC-0005.03 Proximity Operations Threat actors may capture signals and/or network communications as they travel on-board the vehicle (i.e., EMSEC/TEMPEST), via RF, or terrestrial networks. This information can be decoded to determine commanding and telemetry protocols, command times, and other information that could be used for future attacks.
REC-0007 Monitor for Safe-Mode Indicators Threat actors may gather information regarding safe-mode indicators on the victim SV. Safe-mode is when all non-essential systems are shut down and only essential functions within the SV are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
IA-0005 Rendezvous & Proximity Operations Threat actors may perform a space rendezvous which is a set of orbital maneuvers during which a spacecraft arrives at the same orbit and approach to a very close distance (e.g. within visual contact or close proximity) to a target SV.
IA-0005.01 Compromise Emanations Threat actors in close proximity may intercept and analyze electromagnetic radiation emanating from cryptoequipment and/or the target SV (i.e., main bus) to determine whether the emanations are information bearing. The data could be used to establish initial access.
IA-0005.02 Docked Vehicle / OSAM Threat actors may leverage docking vehicles to laterally move into a target SV. If information is known on docking plans, a threat actor may target vehicles on the ground or in space to deploy malware to laterally move or execute malware on the target SV via the docking interface.
IA-0005.03 Proximity Grappling Threat actors may posses the capability to grapple target SVs once it has established the appropriate space rendezvous. If from a proximity / rendezvous perspective a threat actor has the ability to connect via docking interface or expose testing (i.e., JTAG port) once it has grappled the target SV, they could perform various attacks depending on the access enabled via the physical connection.
IA-0008 Rogue External Entity Threat actors may gain access to a victim SV through the use of a rogue external entity. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.02 Rogue Spacecraft Threat actors may gain access to a target SV using their own SV that has the capability to maneuver within close proximity to a target SV to carry out a variety of TTPs (i.e., eavesdropping, side-channel, etc.). Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference.
EX-0011 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim SV being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the SV are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
EX-0015 Side-Channel Attack Threat actors may use a side-channel attack attempts to gather information or influence the program execution of a system by measuring or exploiting indirect effects of the SV. Side-Channel attacks can be active or passive. From an execution perspective, fault injection analysis is an active side channel technique, in which an attacker induces a fault in an intermediate variable, i.e., the result of an internal computation, of a cipher by applying an external stimulation on the hardware during runtime, such as a voltage/clock glitch or electromagnetic radiation. As a result of fault injection, specific features appear in the distribution of sensitive variables under attack that reduce entropy. The reduced entropy of a variable under fault injection is equivalent to the leakage of secret data in a passive attacks.
EXF-0002 Side-Channel Attack Threat actors may use a side-channel attack attempts to gather information by measuring or exploiting indirect effects of the SV. Information within the SV can be extracted through these side-channels in which sensor data is analyzed in non-trivial ways to recover subtle, hidden or unexpected information. A series of measurements of a side-channel constitute an identifiable signature which can then be matched against a signature database to identify target information, without having to explicitly decode the side-channel.
EXF-0001 Replay Threat actors may exfiltrate data by replaying commands and capturing the telemetry or payload data as it is sent down. One scenario would be the threat actor replays commands to downlink payload data once SV is within certain location so the data can be intercepted on the downlink by threat actor ground terminals.
EXF-0003 Eavesdropping Threat actors may seek to capture network communications throughout the ground station and communication channel (i.e. radio frequency, optical) used for uplink and downlink communications
EXF-0003.01 Uplink Intercept Threat actors may target the uplink connection from the victim ground infrastructure to the target SV in order to exfiltrate commanding data. Depending on the implementation (i.e., encryption) the captured uplink data can be used to further other attacks like command link intrusion, replay, etc.
EXF-0003.02 Downlink Intercept Threat actors may target the downlink connection from the victim SV in order to exfiltrate telemetry or payload data. This data can include health information of the SV or whatever mission data that is being collected/analyzed on the SV.
EXF-0005 Proximity Operations Threat actors may leverage the lack of emission security or tempest controls to exfiltrate information using a visiting SV. This is similar to side-channel attacks but leveraging a visiting SV to measure the signals for decoding purposes.
LM-0003 Constellation Hopping via Crosslink Threat actors may attempt to command another neighboring spacecraft via crosslink. SVs in close proximity are often able to send commands back and forth. Threat actors may be able to leverage this access to compromise another SV.
IMP-0006 Theft Threat actors may attempt to steal the data that is being gathered, processed, and sent from the victim SV. Many SVs have a particular purpose associated with them and the data they gather is deemed mission critical. By attempting to steal this data, the mission, or purpose, of the SV could be lost entirely.

Related SPARTA Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001
CM0000 Countermeasure Not Identified This technique is a result of utilizing TTPs to create an impact and the applicable countermeasures are associated with the TTPs leveraged to achieve the impact None None
CM0001 Protect Sensitive Information Organizations should look to identify and properly classify mission sensitive design/operations information (e.g., fault management approach) and apply access control accordingly. Any location (ground system, contractor networks, etc.) storing design information needs to ensure design info is protected from exposure, exfiltration, etc. Space system sensitive information may be classified as Controlled Unclassified Information (CUI) or Company Proprietary. Space system sensitive information can typically include a wide range of candidate material: the functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, CUI, proprietary, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission. Sensitive documentation should only be accessed by personnel with defined roles and a need to know. Well established access controls (roles, encryption at rest and transit, etc.) and data loss prevention (DLP) technology are key countermeasures. The DLP should be configured for the specific data types in question. AC-3(11) AC-4(23) AC-4(25) CM-12 CM-12(1) PM-11 PM-17 SA-3(1) SA-3(2) SA-4(12) SA-5 SA-9(7) SI-21 SI-23 SR-12 SR-7 A.8.4 A.8.11 A.8.10 A.8.33 7.5.1 7.5.2 7.5.3 A.5.37 A.8.10 A.5.22