SV-SP-11

Software defined radios - SDR is also another computer, networked to other parts of the spacecraft that could be pivoted to by an attacker and infected with malicious code. Once access to an SDR is gained, the attacker could alter what the SDR thinks is correct frequencies and settings to communicate with the ground.


Informational References

ID: SV-SP-11
DiD Layer: SBC
CAPEC #:  184 | 186 | 401 | 440 | 442 | 443 | 445 | 446 | 452 | 511 | 516 | 520 | 522 | 523 | 531 | 534 | 535 | 537 | 583 | 624
Lowest Threat Tier to
Create Threat Event:  
III
Notional Risk Rank Score: 

High-Level Requirements

The Program shall ensure Software Defined Radios are deemed critical to operations and supply chain risk management strategies are employed for both the hardware and software.

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The Program shall review proposed changes to the spacecraft, assessing both mission and security impacts. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-10,CM-3(2)}
The Program shall perform configuration management during system, component, or service during [design; development; implementation; operations]. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-10}
The Program prohibits the use of binary or machine-executable code from sources with limited or no warranty and without the provision of source code. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {CM-7(8)}
The Program shall perform and document threat and vulnerability analyses of the as-built system, system components, or system services. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(2)}
The Program shall use the threat and vulnerability analyses of the as-built system, system components, or system services to inform and direct subsequent testing/evaluation of the as-built system, component, or service. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(2)}
The Program shall perform a manual code review of all flight code. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(4)}
The Program shall conduct an Attack Surface Analysis and reduce attack surfaces to a level that presents a low level of compromise by an attacker. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(6),SA-15(5)}
The Program shall use threat modeling and vulnerability analysis to inform the current development process using analysis from similar systems, components, or services where applicable. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(2),SA-15(8)} The security assessment plan should include evaluation of mission objectives in relation to the security of the mission. Assessments should not only be control based but also functional based to ensure mission is resilient against failures of controls.
The Program shall create and implement a security assessment plan that includes: (1) The types of analyses, testing, evaluation, and reviews of [all] software and firmware components; (2) The degree of rigor to be applied to include abuse cases and/or penetration testing; and (3) The types of artifacts produced during those processes. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11,SA-11(5),CA-8} * The frequency of testing should be driven by Program completion events and updates. * Examples of approaches are static analyses, dynamic analyses, binary analysis, or a hybrid of the three approaches
The Program shall verify that the scope of security testing/evaluation provides complete coverage of required security controls (to include abuse cases and penetration testing) at the depth of testing defined in the test documents. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(5),SA-11(7),CA-8} The depth needs to include functional testing as well as negative/abuse testing.
The Program shall perform [Selection (one or more): unit; integration; system; regression] testing/evaluation at [Program-defined depth and coverage]. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11}
The Program shall maintain evidence of the execution of the security assessment plan and the results of the security testing/evaluation. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11,CA-8} The verifiable process should also include a cross reference to mission objectives and impact statements. Understanding the flaws discovered and how they correlate to mission objectives will aid in prioritization.
The Program shall implement a verifiable flaw remediation process into the developmental and operational configuration management process. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11} Flaws that impact the mission objectives should be prioritized.
The Program shall correct flaws identified during security testing/evaluation. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11}
The Program shall perform vulnerability analysis and risk assessment of [all systems and software]. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-15(7),RA-5}
The Program shall identify, report, and coordinate correction of cybersecurity-related information system flaws. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SI-2} * Although this requirement is stated to specifically apply to cybersecurity-related flaws, the Program office may choose to broaden it to all SV flaws. * This requirement is allocated to the Program, as it is presumed, they have the greatest knowledge of the components of the system and when identified flaws apply. 
The Program shall correct reported cybersecurity-related information system flaws. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SI-2} This requirement is focused on software and firmware flaws. If hardware flaw remediation is required, refine the requirement to make this clear. 
The Program shall test software and firmware updates related to flaw remediation for effectiveness and potential side effects on mission systems in a separate test environment before installation. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SI-2,CM-3(2),CM-4(1)} On-orbit patching/upgrades may be necessary if vulnerabilities are discovered after launch. The system should have the ability to update software post-launch.
The Program shall release updated versions of the mission information systems incorporating security-relevant software and firmware updates, after suitable regression testing, at a frequency no greater than [Program-defined frequency [90 days]]. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {CM-3(2),CM-4(1)}
The Program shall report identified systems or system components containing software affected by recently announced cybersecurity-related software flaws (and potential vulnerabilities resulting from those flaws) to [Program-defined officials] with cybersecurity responsibilities in accordance with organizational policy. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-11} {SI-2} Component/Origin scanning looks for open-source libraries/software that may be included into the baseline and looks for known vulnerabilities and open-source license violations.
The Program shall ensure that vulnerability scanning tools and techniques are employed that facilitate interoperability among tools and automate parts of the vulnerability management process by using standards for: (1) Enumerating platforms, custom software flaws, and improper configurations; (2) Formatting checklists and test procedures; and (3) Measuring vulnerability impact. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {RA-5} The prioritized list of CWEs should be created considering operational environment, attack surface, etc. Results from the threat modeling and attack surface analysis should be used as inputs into the CWE prioritization process. There is also a CWSS (https://cwe.mitre.org/cwss/cwss_v1.0.1.html) process that can be used to prioritize CWEs. The prioritized list of CWEs can help with tools selection as well as you select tools based on their ability to detect certain high priority CWEs.
The Program shall create prioritized list of software weakness classes (e.g., Common Weakness Enumerations) to be used during static code analysis for prioritization of static analysis results. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(1),SA-15(7)}
The Program shall perform static source code analysis for [all available source code] looking for [Select one {Program-defined Top CWE List, SANS Top 25, OWASP Top 10}] weaknesses using no less than two static code analysis tools. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(1),SA-15(7),RA-5}
The Program shall perform component analysis (a.k.a. origin analysis) for developed or acquired software. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-15(7),RA-5}
The Program shall analyze vulnerability/weakness scan reports and results from security control assessments. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {RA-5}
The Program shall determine the vulnerabilities/weaknesses that require remediation, and coordinate the timeline for that remediation, in accordance with the analysis of the vulnerability scan report, the Program assessment of risk, and mission needs. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {RA-5}
The Program shall ensure that the vulnerability scanning tools (e.g., static analysis and/or component analysis tools) used include the capability to readily update the list of potential information system vulnerabilities to be scanned. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {RA-5}
The Program shall ensure that the list of potential system vulnerabilities scanned is updated [prior to a new scan] {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {RA-5(2)}
The Program shall define acceptable coding languages to be used by the software developer. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-15}
The Program shall define acceptable secure coding standards for use by the developer. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-15} Manual review cannot scale across the code base; you must have a way to scale in order to confirm your coding standards are being met. The intent is for automated means to ensure code adheres to a coding standard.
The Program shall have automated means to evaluate adherence to coding standards. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-15,SA-15(7),RA-5} Fuzzing and/or dynamic analysis with abuse cases is important to flush out edge cases and how malicious actors could affect the spacecraft's FSW. Not all defects (i.e., buffer overflows, race conditions, and memory leaks) can be discovered statically and require execution of the software. This is where space-centric cyber testbeds (i.e., cyber ranges) are imperative as they provide an environment to maliciously attack components in a controlled environment to discover these undesirable conditions. Technology has improved to where digital twins for spacecraft are achievable, which provides an avenue for cyber testing that was often not performed due to perceived risk to the flight hardware.
The Program shall employ dynamic analysis (e.g., using simulation, penetration testing, fuzzing, etc.) to identify software/firmware weaknesses and vulnerabilities in developed and incorporated code (open source, commercial, or third-party developed code). {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(5),SA-11(8),CA-8} The chosen supply chain safeguards should demonstrably support a comprehensive, defense-in-breadth information security strategy. Safeguards should include protections for both hardware and software. Program should define their critical components (HW & SW) and identify the supply chain protections, approach/posture/process.
The Program shall protect against supply chain threats to the system, system components, or system services by employing [institutional-defined security safeguards] {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-1} The intent of this requirement is to address supply chain concerns on hardware and software vendors. Not required for trusted suppliers accredited to the Defense Microelectronic Activity (DMEA). If the Program intends to use a supplier not accredited by DMEA, the government customer should be notified as soon as possible. If the Program has internal processes to vet suppliers, it may meet this requirement. All software used and its origins must be included in the SBOM and be subjected to internal and Government vulnerability scans.
The Program shall request threat analysis of suppliers of critical components and manage access to and control of threat analysis products containing U.S. person information. {SV-SP-3,SV-SP-4,SV-SP-11} {SR-1} This could include tailored acquisition strategies, contract tools, and procurement methods.
The Program shall employ the [Program-defined] approaches for the purchase of the system, system components, or system services from suppliers. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-5}
The Program shall employ [Selection (one or more): independent third-party analysis, Program penetration testing, independent third-party penetration testing] of [Program-defined supply chain elements, processes, and actors] associated with the system, system components, or system services. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-6(1)} Penetration testing should be performed throughout the lifecycle on physical and logical systems, elements, and processes including: (1) Hardware, software, and firmware development processes; (2) Shipping/handling procedures; (3) Personnel and physical security programs; (4) Configuration management tools/measures to maintain provenance; and (5) Any other programs, processes, or procedures associated with the production/distribution of supply chain elements. 
The Program shall perform penetration testing/analysis: (1) On potential system elements before accepting the system; (2) As a realistic simulation of the active adversary’s known adversary tactics, techniques, procedures (TTPs), and tools; and (3) Throughout the lifecycle on physical and logical systems, elements, and processes. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SA-11(5)} Examples of security safeguards that the organization should consider implementing to limit the harm from potential adversaries targeting the organizational supply chain, are: (1) Using trusted physical delivery mechanisms that do not permit access to the element during delivery (ship via a protected carrier, use cleared/official couriers, or a diplomatic pouch); (2) Using trusted electronic delivery of products and services (require downloading from approved, verification-enhanced sites); (3) Avoiding the purchase of custom configurations, where feasible; (4) Using procurement carve outs (i.e., exclusions to commitments or obligations), where feasible; (5) Using defensive design approaches; (6) Employing system OPSEC principles; (7) Employing a diverse set of suppliers; (8) Employing approved vendor lists with standing reputations in industry; (9) Using a centralized intermediary and “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary Employing inventory management policies and processes; (10) Using flexible agreements during each acquisition and procurement phase so that it is possible to meet emerging needs or requirements to address supply chain risk without requiring complete revision or re-competition of an acquisition or procurement; (11) Using international, national, commercial or government standards to increase potential supply base; (12) Limiting the disclosure of information that can become publicly available; and (13) Minimizing the time between purchase decisions and required delivery. 
The Program shall employ [Program-defined] techniques to limit harm from potential adversaries identifying and targeting the Program supply chain. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-3(2),SC-38} * The Program should also consider sub suppliers and potential sub suppliers. * All-source intelligence of suppliers that the organization may use includes: (1) Defense Intelligence Agency (DIA) Threat Assessment Center (TAC), the enterprise focal point for supplier threat assessments for the DOD acquisition community risks; (2) Other U.S. Government resources including: (a) Government Industry Data Exchange Program (GIDEP) – Database where government and industry can record issues with suppliers, including counterfeits; and (b) System for Award Management (SAM) – Database of companies that are barred from doing business with the US Government. 
The Program shall use all-source intelligence analysis of suppliers and potential suppliers of the information system, system components, or system services to inform engineering, acquisition, and risk management decisions. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {RA-3(2)}
The Program (and Prime Contractor) shall conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-6} Ideally you have diversification with suppliers
The Program shall maintain a list of suppliers and potential suppliers used, and the products that they supply to include software. {SV-SP-3,SV-SP-4,SV-SP-11} {PL-8(2)} OPSEC safeguards may include: (1) Limiting the disclosure of information needed to design, develop, test, produce, deliver, and support the element for example, supplier identities, supplier processes, potential suppliers, security requirements, design specifications, testing and evaluation result, and system/component configurations, including the use of direct shipping, blind buys, etc.; (2) Extending supply chain awareness, education, and training for suppliers, intermediate users, and end users; (3) Extending the range of OPSEC tactics, techniques, and procedures to potential suppliers, contracted suppliers, or sub-prime contractor tier of suppliers; and (4) Using centralized support and maintenance services to minimize direct interactions between end users and original suppliers.
The Program shall employ [Program-defined Operations Security (OPSEC) safeguards] to protect supply chain-related information for the system, system components, or system services. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-7,SC-38,CP-2(8)}
The Program shall develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including support tamper resistance and provide a level of protection against the introduction of malicious code or hardware. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-11}
The Program shall develop and implement anti-counterfeit policy and procedures, in coordination with the [CIO], that is demonstrably consistent with the anti-counterfeit policy defined by the Program office. {SV-SP-4,SV-SP-11} {SR-11}
See threat ID number SV-SP-3 for information on software development requirements. In general terms threat ID SV-SP-4 applies from a generic sense since software reuse or COTS usage is a supply chain concern. The Program shall ensure that software planned for reuse meets the fit, form, and function, and security as a component within the new application. {SV-SP-6,SV-SP-7,SV-SP-11} {CM-7(5)} Many commercial products/parts are utilized within the system and should be analyzed for security weaknesses. Blindly accepting the firmware is free of weakness is unacceptable for high assurance missions. The intent is to not blindly accept firmware from unknown sources and assume it is secure. This is meant to apply to firmware the vendors are not developing internally. In-house developed firmware should be going through the vendor's own testing program and have high assurance it is secure. When utilizing firmware from other sources, "expecting" does not meet this requirement. Each supplier needs to provide evidence to support that claim that their firmware they are getting is genuine and secure.
The Program shall perform static binary analysis of all firmware that is utilized on the spacecraft. {SV-SP-7,SV-SP-11} {SA-11,RA-5} The intent is for multiple checks to be performed prior to executing these SV SW updates. One action is mere act of uploading the SW to the spacecraft. Another action could be check of digital signature (ideal but not explicitly required) or hash or CRC or a checksum. Crypto boxes provide another level of authentication for all commands, including SW updates but ideally there is another factor outside of crypto to protect against FSW updates.
See threat IDs SV-SP-1,SV-SP-3,SV-SP-4, and SV-SP-10 for general supply chain protections. But any SW update should have two-man rule enacted. The spacecraft shall require multi-factor authorization for all SV [applications or operating systems] updates within the spacecraft. {SV-SP-9,SV-SP-11} {AC-3(2)}
This would be similar to inserting malicious logic into the spacecraft during the development (HW and SW supply chain which are covered under SV-SP-3, SV-SP-4, SV-SP-6, and SV-SP-7)or via SW update process once launched which is covered under threat ID SV-SP-9. Depending on the implementation of the SDR the controls would be different therefore specific requirements are not generated for this particular threat but are covered by other threats. {SV-SP-11}

Related SPARTA Techniques and Sub-Techniques

ID Name Description
IA-0002 Compromise Software Defined Radio Threat actors may target software defined radios due to their software nature to establish C2 channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert C2 channels for a threat actor.
IA-0004 Secondary/Backup Communication Channel Threat actors may compromise alternative communication pathways which may not be as protected as the primary pathway. Depending on implementation the contingency communication pathways/solutions may lack the same level of security (i.e., physical security, encryption, authentication, etc.) which if forced to use could provide a threat actor an opportunity to launch attacks. Typically these would have to be coupled with other denial of service techniques on the primary pathway to force usage of secondary pathways.
IA-0004.02 Receiver Threat actors may target the backup/secondary receiver on the space vehicle as a method to inject malicious communications into the mission. The secondary receivers may come from different supply chains than the primary which could have different level of security and weaknesses. Similar to the ground station, the communication through the secondary receiver could be forced or happening naturally.
EXF-0006 Modify Software Defined Radio Threat actors may target software defined radios due to their software nature to setup exfiltration channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert exfiltration channels for a threat actor.

Related SPARTA Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001