CM0001

Hardware failure (i.e., tainted hardware) {ASIC and FPGA focused}


Informational References

ID: CM0001
DiD Layer: Prevention
CAPEC #:  401 | 444 | 447 | 452 | 516 | 519 | 520 | 521 | 522 | 530 | 531 | 534 | 537 | 539 | 544 | 638
NIST Rev5 Control Tag Mapping:  CA-2(2 | CM-7 | CM-7(9) | PM-30 | PM-30(1) | RA-3 | RA-3(1) | RA-3(2) | RA-9 | SA-3 | SA-3(1) | SA-8 | SA-8(9) | SA-8(21) | SA-10 | SA-10(7) | SA-11 | SA-11(9) | SR-1 | SR-3 | SR-3(1) | SR-3(2) | SR-4 | SR-4(3) | SR-4(4) | SR-5 | SR-5(1) | SR-5(2) | SR-9 | SR-9(1) | SR-11 | SR-11(3)
Lowest Threat Tier to
Create Threat Event:  
V
Notional Risk Rank Score: 

High-Level Requirements

The Program shall establish robust procedures and technical methods to prevent the introduction of tainted ASIC and FPGAs into the spacecraft supply chain.

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The Program shall ensure that the contractors/developers have all EEEE, and mechanical piece parts procured from the Original Component Manufacturer (OCM) or their authorized franchised distribution network. {SV-SP-5} {SR-1,SR-5} The Program, working with the contractors, shall identify which ASICs/FPGAs perform or execute an integral part of mission critical functions and if the supplier is accredited “Trusted” by DMEA. If the contractor is not accredited by DMEA, then the Program may apply various of the below ASIC/FPGA assurance requirements to the contractor, and the Program may need to perform a risk assessment of the contractor’s design environment.
Any EEEE or mechanical piece parts that cannot be procured from the OCM or their authorized franchised distribution network shall be approved by the program’s Parts, Materials and Processes Control Board (PMPCB) as well as the government program office to prevent and detect counterfeit and fraudulent parts and materials. {SV-SP-5} {SR-1,SR-5}
The Program shall ensure that the contractors/developers have all ASICs designed, developed, manufactured, packaged, and tested by suppliers with a Defense Microelectronics Activity (DMEA) Trust accreditation. {SV-SP-5} {SR-1,SR-5} DOD-I-5200.44 requires the following:
For ASICs that are designed, developed, manufactured, packaged, or tested by a supplier that is NOT DMEA accredited Trusted, the ASIC development shall undergo a threat/vulnerability risk assessment. The assessment shall use Aerospace security guidance and requirements tailored from TOR-2019-00506 Vol. 2, and TOR-2019-02543 ASIC and FPGA Risk Assessment Process and Checklist. Based on the results of the risk assessment, the Program may require the developer to implement protective measures or other processes to ensure the integrity of the ASIC. {SV-SP-5} {SR-1,SR-5} • 4.c.2 “Control the quality, configuration, and security of software, firmware, hardware, and systems throughout their lifecycles... Employ protections that manage risk in the supply chain… (e.g., integrated circuits, field-programmable gate arrays (FPGA), printed circuit boards) when they are identifiable (to the supplier) as having a DOD end-use. “
The developer shall use a DMEA certified environment to develop, code and test executable software (firmware or bit-stream) that will be programmed into a one-time programmable FPGA or be programmed into non-volatile memory (NVRAM) that the FPGA executes. {SV-SP-5} {SR-1,SR-5} • 4.e “In applicable systems, integrated circuit-related products and services shall be procured from a Trusted supplier accredited by the Defense Microelectronics Activity (DMEA) when they are custom-designed, custom-manufactured, or tailored for a specific DOD military end use (generally referred to as application-specific integrated circuits (ASIC)). “
For FPGA pre-silicon artifacts that are developed, coded, and tested by a developer that is NOT DMEA accredited Trusted, the contractor/developer shall be subjected to a development environment and pre-silicon artifacts risk assessment by the Program. The assessment shall use Aerospace security guidance and requirements in TOR-2019-00506 Vol. 2, and TOR-2019-02543 ASIC and FPGA Risk Assessment Process and Checklist. Based on the results of the risk assessment, the Program may require the developer to implement protective measures or other processes to ensure the integrity of the FPGA pre-silicon artifacts. {SV-SP-5} {SR-1,SR-5} • 1.g “In coordination with the DOD CIO, the Director, Defense Intelligence Agency (DIA), and the Heads of the DOD Components, develop a strategy for managing risk in the supply chain for integrated circuit-related products and services (e.g., FPGAs, printed circuit boards) that are identifiable to the supplier as specifically created or modified for DOD (e.g., military temperature range, radiation hardened).
In the event we want to levy the Government Microelectronics Assessment for Trust (GOMAT) framework outright, to perform ASIC and FPGA threat/vulnerability risk assessment, the following requirements would apply: {SV-SP-5} {SR-1,SR-5} * The GOMAT framework shall be used to perform an initial risk assessment via Aerospace TOR-2019-02543 ASIC/FPGA Risk Assessment Process and Checklist. * The GOMAT framework shall be used to provide ASIC/FPGA lifecycle security guidance and requirements via Aerospace TOR-2019-00506 Volumes & 2 “ASIC and FPGA Lifecyle Security: Threats and Countermeasures”. * The GOMAT framework shall be used to perform development environment vulnerability assessment via Aerospace TOR-2019-02543 ASIC/FPGA Risk Assessment Process and Checklist. * The GOMAT framework shall be used to perform development environment vulnerability (DEV) assessment using the tailored DEV requirements from Aerospace TOR-2019-00506 Volume 2. * The GOMAT framework shall be used to perform hardware Trojan horse (HTH) detection independent verification and validation (IV&V). * The GOMAT framework shall be used to perform incremental and final risk assessments via Aerospace TOR-2019-02543 ASIC/FPGA Risk Assessment Process and Checklist. * The GOMAT framework shall be used to recommend mitigations, based on the findings of the risk assessments, to address identified security concerns and vulnerabilities.
Watchdog timers can be implemented via hardware of software. See threat ID SV-SP-3, SV-SP-4, and SV-SP-5 for information on SW, supply chain, and tainted hardware requirements. The watchdog timer is likely considered mission critical/cyber critical therefore requirements from threat ID SV-MA-3 may come into play. Since this threat can be either HW or SW, view the other threat IDs for requirements/controls to mitigate this threat but it is imperative to synchronize system clocks within and between systems and system components.. {SV-AV-3} {SC-45,SC-45(1),SC-45(2)}
This would be similar to inserting malicious logic into the spacecraft during the development (HW and SW supply chain which are covered under SV-SP-5, SV-SP-3, and SV-SP-4)or via SW update process once launched which is covered under threat ID SV-SP-9. Depending on the implementation of the payload/component the controls would be different therefore specific requirements are not generated for this particular threat but are covered by other threats. Additionally, EPS related requirements/controls were also mentioned with SV-MA-3. {SV-MA-8} {SC-6}

Related SPARTA Techniques and Sub-Techniques

ID Name Description
IA-0001 Compromise Supply Chain Threat actors may manipulate or compromise products or product delivery mechanisms before the customer receives them in order to achieve data or system compromise.
IA-0001.03 Hardware Supply Chain Threat actors may manipulate hardware components in the victim SV prior to the customer receiving them in order to achieve data or system compromise. The threat actor can insert backdoors and give them a high level of control over the system when they modify the hardware or firmware in the supply chain. This would include ASIC and FPGA devices as well.
EX-0005 Exploit Hardware/Firmware Corruption Threat actors can target the underlying hardware and/or firmware using various TTPs that will be dependent on the specific hardware/firmware. Typically, software tools (e.g., antivirus, antimalware, intrusion detection) can protect a system from threat actors attempting to take advantage of those vulnerabilities to inject malicious code. However, there exist security gaps that cannot be closed by the above-mentioned software tools since they are not stationed on software applications, drivers or the operating system but rather on the hardware itself. Hardware components, like memory modules and caches, can be exploited under specific circumstances thus enabling backdoor access to potential threat actors. In addition to hardware, the firmware itself which often is thought to be software in its own right also provides an attack surface for threat actors. Firmware is programming that's written to a hardware device's non-volatile memory where the content is saved when a hardware device is turned off or loses its external power source. Firmware is written directly onto a piece of hardware during manufacturing and it is used to run on the device and can be thought of as the software that enables hardware to run. In the space vehicle context, firmware and field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic/code is considered equivalent to firmware.
EX-0005.01 Design Flaws Threat actors may target design features/flaws with the hardware design to their advantage to cause the desired impact. Threat actors may utilize the inherent design of the hardware (e.g. hardware timers, hardware interrupts, memory cells), which is intended to provide reliability, to their advantage to degrade other aspects like availability. Additionally, field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic can be exploited just like software code can be exploited. There could be logic/design flaws embedded in the hardware (i.e., FPGA/ASIC) which may be exploitable by a threat actor.
IMP-0002 Disruption Threat actors may seek to disrupt communications from the victim SV to the ground controllers or other interested parties. By disrupting communications during critical times, there is the potential impact of data being lost or critical actions not being performed. This could cause the SV's purpose to be put into jeopardy depending on what communications were lost during the disruption. This behavior is different than Denial as this attack can also attempt to modify the data and messages as they are passed as a way to disrupt communications.
IMP-0003 Denial Threat actors may seek to deny ground controllers and other interested parties access to the victim SV. This would be done exhausting system resource, degrading subsystems, or blocking communications entirely. This behavior is different from Disruption as this seeks to deny communications entirely, rather than stop them for a length of time.
IMP-0004 Degradation Threat actors may target various subsystems or the hosted payload in such a way in order to rapidly increase it's degradation. This could potentially shorten the lifespan of the victim SV.

Related SPARTA Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001
CM0000 Countermeasure Not Identified This technique is a result of utilizing TTPs to create an impact and the applicable countermeasures are associated with the TTPs leveraged to achieve the impact None None
CM0001 Protect Sensitive Information Organizations should look to identify and properly classify mission sensitive design/operations information (e.g., fault management approach) and apply access control accordingly. Any location (ground system, contractor networks, etc.) storing design information needs to ensure design info is protected from exposure, exfiltration, etc. Space system sensitive information may be classified as Controlled Unclassified Information (CUI) or Company Proprietary. Space system sensitive information can typically include a wide range of candidate material: the functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, CUI, proprietary, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission. Sensitive documentation should only be accessed by personnel with defined roles and a need to know. Well established access controls (roles, encryption at rest and transit, etc.) and data loss prevention (DLP) technology are key countermeasures. The DLP should be configured for the specific data types in question. AC-3(11) AC-4(23) AC-4(25) CM-12 CM-12(1) PM-11 PM-17 SA-3(1) SA-3(2) SA-4(12) SA-5 SA-9(7) SI-21 SI-23 SR-12 SR-7 A.8.4 A.8.11 A.8.10 A.8.33 7.5.1 7.5.2 7.5.3 A.5.37 A.8.10 A.5.22