CM0029

Three main parts of S/C. CPU, memory, I/O interfaces with parallel and/or serial ports. These are connected via busses (i.e., 1553) and need segregated. Supply chain attack on CPU (FPGA/ASICs), supply chain attack to get malware burned into memory through the development process, and rogue RTs on 1553 bus via hosted payloads are all threats. Security or fault management being disabled by non-mission critical or payload; fault injection or MiTM into the 1553 Bus - China has developed fault injector for 1553 - this could be a hosted payload attack if payload has access to main 1553 bus; One piece of FSW affecting another. Things are not containerized from the OS or FSW perspective;


Informational References

ID: CM0029
DiD Layer: SBC
CAPEC #:  1 | 124 | 180 | 276 | 545 | 546
Lowest Threat Tier to
Create Threat Event:  
V
Notional Risk Rank Score: 

High-Level Requirements

The spacecraft shall employ segregation and least privilege principles for the on-board architecture, communications, and control.

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The [organization] shall identify the key system components or capabilities that require isolation through physical or logical means.{SV-AC-6}{AC-3,SC-3,SC-7(13),SC-28(3),SC-32,SC-32(1)} Fault management and security management capabilities would be classified as mission critical and likely need separated. Additionally, capabilities like TT&C, C&DH, GNC might need separated as well.
The [spacecraft] shall employ the principle of least privilege, allowing only authorized accesses processes which are necessary to accomplish assigned tasks in accordance with system functions.{SV-AC-6}{AC-3,AC-6,AC-6(9),CA-9,CM-5,CM-5(5),CM-5(6),SA-8(2),SA-8(5),SA-8(6),SA-8(14),SA-8(23),SA-17(7),SC-2,SC-7(29),SC-32,SC-32(1),SI-3}
The [spacecraft] shall ensure that processes reusing a shared system resource (e.g., registers, main memory, secondary storage) do not have access to information (including encrypted representations of information) previously stored in that resource during a prior use by a process after formal release of that resource back to the system or reuse.{SV-AC-6}{AC-3,PM-32,SA-8(2),SA-8(5),SA-8(6),SA-8(19),SC-4,SI-3}
The [spacecraft] shall enforce approved authorizations for controlling the flow of information within the platform and between interconnected systems so that information does not leave the platform boundary unless it is encrypted.{SV-AC-6}{AC-3(3),AC-3(4),AC-4,AC-4(6),AC-4(21),CA-3,CA-3(6),CA-3(7),CA-9,IA-9,SA-8(19),SC-8(1),SC-16(3)}
The [spacecraft] shall, when transferring information between different security domains, implements the following security policy filters that require fully enumerated formats that restrict data structure and content: connectors and semaphores implemented in the RTOS.{SV-AC-6}{AC-3(3),AC-3(4),AC-4(14),IA-9,SA-8(19),SC-16}
The [spacecraft] shall implement boundary protections to separate bus, communications, and payload components supporting their respective functions.{SV-AC-6}{AC-3(3),AC-3(4),CA-9,SA-8(3),SA-8(14),SA-8(18),SA-8(19),SA-17(7),SC-2,SC-2(2),SC-7(13),SC-7(21),SC-7(29),SC-16(3),SC-32,SI-3,SI-4(13),SI-4(25)}
The [spacecraft] shall isolate mission critical functionality from non-mission critical functionality by means of an isolation boundary (e.g.via partitions) that controls access to and protects the integrity of, the hardware, software, and firmware that provides that functionality.{SV-AC-6}{AC-3(3),AC-3(4),CA-9,SA-8(3),SA-8(19),SA-17(7),SC-2,SC-3,SC-3(4),SC-7(13),SC-7(29),SC-32,SC-32(1),SI-3,SI-7(10),SI-7(12)}
The [spacecraft] data within partitioned applications shall not be read or modified by other applications/partitions.{SV-AC-6}{AC-3(3),AC-3(4),SA-8(19),SC-2(2),SC-4,SC-6,SC-32}
The [spacecraft] shall prevent unauthorized access to system resources by employing an efficient capability based object model that supports both confinement and revocation of these capabilities when the platform security deems it necessary.{SV-AC-6}{AC-3(8),IA-4(9),PM-32,SA-8(2),SA-8(5),SA-8(6),SA-8(18),SA-8(19),SC-2(2),SC-4,SC-16,SC-32,SI-3}
The [organization] shall state that information should not be allowed to flow between partitioned applications unless explicitly permitted by the Program's security policy.{SV-AC-6}{AC-4,AC-4(6)}
The [spacecraft] shall use protected processing domains to enforce the policy that information does not leave the platform boundary unless it is encrypted as a basis for flow control decisions.{SV-AC-6}{AC-4(2),IA-9,SA-8(19),SC-8(1),SC-16(3)}
The [organization] shall define the resources to be allocated to protect the availability of system resources.{SV-AC-6}{CP-2(2),SC-6}
The [spacecraft] shall prevent unauthorized and unintended information transfer via shared system resources.{SV-AC-6}{PM-32,SA-8(2),SA-8(5),SA-8(6),SA-8(19),SC-2(2),SC-4}
The [spacecraft] shall maintain a separate execution domain for each executing process.{SV-AC-6}{SA-8(14),SA-8(19),SC-2(2),SC-7(21),SC-39,SI-3}
The [spacecraft] flight software must not be able to tamper with the security policy or its enforcement mechanisms.{SV-AC-6}{SA-8(16),SA-8(19),SC-3,SC-7(13)}
The [spacecraft] shall protect the availability of resources by allocating [organization]-defined resources based on [priority and/or quota].{SV-AC-6}{SC-6} In particular, this control is required for all space platform buses to ensure execution of high priority functions; it is particularly important when there are multiple payloads sharing a bus providing communications and other services, where bus resources must be prioritized based on mission.
The [organization] shall define the security safeguards to be employed to protect the availability of system resources.{SV-AC-6}{SC-6,SI-17}

Related SPARTA Techniques and Sub-Techniques

ID Name Description
IA-0005 Rendezvous & Proximity Operations Threat actors may perform a space rendezvous which is a set of orbital maneuvers during which a spacecraft arrives at the same orbit and approach to a very close distance (e.g. within visual contact or close proximity) to a target spacecraft.
IA-0005.02 Docked Vehicle / OSAM Threat actors may leverage docking vehicles to laterally move into a target spacecraft. If information is known on docking plans, a threat actor may target vehicles on the ground or in space to deploy malware to laterally move or execute malware on the target spacecraft via the docking interface.
EX-0001 Replay Replay attacks involve threat actors recording previously data streams and then resending them at a later time. This attack can be used to fingerprint systems, gain elevated privileges, or even cause a denial of service.
EX-0001.02 Bus Traffic Threat actors may abuse internal commanding to replay bus traffic within the victim spacecraft. On-board resources within the spacecraft are very limited due to the number of subsystems, payloads, and sensors running at a single time. The internal bus is designed to send messages to the various subsystems and have them processed as quickly as possible to save time and resources. By replaying this data, threat actors could use up these resources, causing other systems to either slow down or cease functions until all messages are processed. Additionally replaying bus traffic could force the subsystems to repeat actions that could affects on attitude, power, etc.
LM-0001 Hosted Payload Threat actors may use the hosted payload within the victim spacecraft in order to gain access to other subsystems. The hosted payload often has a need to gather and send data to the internal subsystems, depending on its purpose. Threat actors may be able to take advantage of this communication in order to laterally move to the other subsystems and have commands be processed.
LM-0002 Exploit Lack of Bus Segregation Threat actors may exploit victim spacecraft on-board flat architecture for lateral movement purposes. Depending on implementation decisions, spacecraft can have a completely flat architecture where remote terminals, sub-systems, payloads, etc. can all communicate on the same main bus without any segmentation, authentication, etc. Threat actors can leverage this poor design to send specially crafted data from one compromised devices or sub-system to laterally move to another area of the spacecraft.

Related SPARTA Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001
CM0022 Criticality Analysis Conduct a criticality analysis to identify mission critical functions, critical components, and data flows and reduce the vulnerability of such functions and components through secure system design. Focus supply chain protection on the most critical components/functions. Leverage other countermeasures like segmentation and least privilege to protect the critical components. CP-2(8) PM-11 PM-17 PM-30 PM-30(1) PM-32 RA-3(1) RA-9 RA-9 SA-15(3) SC-32(1) SC-7(29) SR-1 SR-1 SR-2 SR-2(1) SR-3 SR-3(2) SR-3(3) SR-5(1) SR-7 A.5.30 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.22 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.22
CM0024 Anti-counterfeit Hardware Develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including tamper resistance and protection against the introduction of malicious code or hardware.  AC-20(5) CM-7(9) PM-30 PM-30(1) RA-3(1) SA-10(3) SA-10(4) SR-1 SR-10 SR-11 SR-11 SR-11(3) SR-11(3) SR-2 SR-2(1) SR-3 SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5(2) SR-6(1) SR-9 SR-9(1) 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29
CM0025 Supplier Review Conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services. PM-30 PM-30(1) RA-3(1) SR-11 SR-3(1) SR-3(3) SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5(1) SR-5(2) SR-6 SR-6 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29 A.5.22
CM0028 Tamper Protection Perform physical inspection of hardware to look for potential tampering. Leverage tamper proof protection where possible when shipping/receiving equipment. CA-8(3) CM-7(9) MA-7 PM-30 PM-30(1) RA-3(1) SA-10(3) SA-10(4) SC-51 SR-1 SR-1 SR-10 SR-11 SR-11(3) SR-2 SR-2(1) SR-3 SR-4(3) SR-4(4) SR-5 SR-5 SR-5(2) SR-6(1) SR-9 SR-9(1) 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.20 A.5.21 A.5.23 A.8.29
CM0002 COMSEC A component of cybersecurity to deny unauthorized persons information derived from telecommunications and to ensure the authenticity of such telecommunications. COMSEC includes cryptographic security, transmission security, emissions security, and physical security of COMSEC material. It is imperative to utilize secure communication protocols with strong cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission. Systems should also maintain the confidentiality and integrity of information during preparation for transmission and during reception. Spacecraft should not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). The cryptographic mechanisms should identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters. AC-17(1) AC-17(10) AC-17(10) AC-17(2) AC-18(1) AC-2(11) AC-3(10) IA-4(9) IA-5 IA-5(7) IA-7 SA-8(18) SA-9(6) SC-10 SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-13 SC-13(1) SC-13(2) SC-16(3) SC-28(1) SC-28(3) SC-7 SC-7(10) SC-7(11) SC-7(18) SC-7(5) SI-10 SI-10(3) SI-10(5) SI-10(6) SI-19(4) SI-3(8) A.8.16 A.5.16 A.5.17 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.12 A.8.20 A.8.24 A.8.24 A.8.26 A.5.31 A.5.33 A.8.11
CM0031 Authentication Authenticate all communication sessions (crosslink and ground stations) for all commands before establishing remote connections using bidirectional authentication that is cryptographically based. Adding authentication on the spacecraft bus and communications on-board the spacecraft is also recommended. AC-17(10) AC-17(10) AC-17(2) AC-18(1) IA-3(1) IA-4 IA-4(9) IA-7 SA-8(15) SA-8(9) SC-16(2) SC-32(1) SC-7(11) SI-14(3) A.5.16
CM0033 Relay Protection Implement relay and replay-resistant authentication mechanisms for establishing a remote connection or connections on the spacecraft bus. AC-17(10) AC-17(10) IA-2(8) IA-3 IA-3(1) IA-4 IA-7 SC-13 SC-23 SC-7 SC-7(11) SC-7(18) SI-10 SI-10(5) SI-10(6) SI-3(8) A.5.16 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.24 A.8.26 A.5.31
CM0003 TEMPEST The spacecraft should protect system components, associated data communications, and communication buses in accordance with TEMPEST controls to prevent side channel / proximity attacks. Encompass the spacecraft critical components with a casing/shielding so as to prevent access to the individual critical components. PE-19 PE-19(1) PE-21 A.7.5 A.7.8 A.8.12
CM0040 Shared Resource Leakage Prevent unauthorized and unintended information transfer via shared system resources. Ensure that processes reusing a shared system resource (e.g., registers, main memory, secondary storage) do not have access to information (including encrypted representations of information) previously stored in that resource during a prior use by a process after formal release of that resource back to the system or reuse AC-4(23) AC-4(25) SC-2(2) SC-32(1) SC-4 SC-49 SC-50 SC-7(29) A.8.11 A.8.10
CM0050 On-board Message Encryption In addition to authentication on-board the spacecraft bus, encryption is also recommended to protect the confidentiality of the data traversing the bus. AC-4 AC-4(23) AC-4(24) AC-4(26) AC-4(31) AC-4(32) SA-8(18) SA-8(9) SA-9(6) SC-13 SC-16(2) SC-16(3) SI-19(4) SI-4(10) SI-4(25) A.5.14 A.8.22 A.8.23 A.8.11 A.8.24 A.8.26 A.5.31 A.8.11
CM0004 Development Environment Security In order to secure the development environment, the first step is understanding all the devices and people who interact with it. Maintain an accurate inventory of all people and assets that touch the development environment. Ensure strong multi-factor authentication is used across the development environment, especially for code repositories, as threat actors may attempt to sneak malicious code into software that's being built without being detected. Use zero-trust access controls to the code repositories where possible. For example, ensure the main branches in repositories are protected from injecting malicious code. A secure development environment requires change management, privilege management, auditing and in-depth monitoring across the environment. AC-20(5) AC-3(11) AC-3(13) AC-3(15) CA-8 CM-14 CM-2(2) CM-3(2) CM-3(7) CM-3(8) CM-4(1) CM-7(8) CM-7(8) CP-2(8) MA-7 PL-8(2) PM-30 PM-30(1) RA-3(1) RA-3(2) RA-5 RA-5(2) RA-9 SA-10 SA-10(4) SA-11 SA-11(1) SA-11(2) SA-11(2) SA-11(4) SA-11(5) SA-11(5) SA-11(6) SA-11(7) SA-11(7) SA-11(8) SA-15 SA-15(3) SA-15(5) SA-15(7) SA-15(8) SA-3 SA-3(1) SA-3(2) SA-4(3) SA-4(5) SC-38 SI-2 SI-2(6) SR-1 SR-1 SR-11 SR-2 SR-2(1) SR-3 SR-3(2) SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5 SR-5(2) SR-6 SR-6(1) SR-6(1) SR-7 A.8.4 A.8.9 A.8.9 A.8.31 A.5.30 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.8.8 A.5.22 A.5.2 A.5.8 A.8.25 A.8.31 A.8.33 A.8.28 A.8.9 A.8.28 A.8.30 A.8.32 A.8.29 A.8.30 A.8.28 A.5.8 A.8.25 A.8.28 A.6.8 A.8.8 A.8.32 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29 A.5.22 A.5.22
CM0036 Session Termination Terminate the connection associated with a communications session at the end of the session or after an acceptable amount of inactivity which is established via the concept of operations. AC-12 SC-10 SI-14(3) A.8.20
CM0039 Least Privilege Employ the principle of least privilege, allowing only authorized processes which are necessary to accomplish assigned tasks in accordance with system functions. Ideally maintain a separate execution domain for each executing process. AC-3(13) AC-3(15) AC-4(2) AC-6 CA-3(6) CM-7 CM-7(4) CM-7(8) SA-17(7) SA-8(14) SA-8(15) SA-8(9) SC-2(2) SC-32(1) SC-49 SC-50 SC-7(29) A.5.15 A.8.2 A.8.18 A.8.19 A.8.19
CM0055 Secure Command Mode(s) Provide additional protection modes for commanding the spacecraft. These can be where the spacecraft will restrict command lock based on geographic location of ground stations, special operational modes within the flight software, or even temporal controls where the spacecraft will only accept commands during certain times. AC-17(1) AC-17(10) AC-2(11) AC-2(12) AC-3 AC-3(2) AC-3(3) AC-3(4) AC-3(8) CA-3(7) SC-7 SI-3(8) A.8.16 A.5.15 A.5.33 A.8.3 A.8.4 A.8.18 A.8.20 A.8.2 A.8.16 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26
CM0005 Ground-based Countermeasures This countermeasure is focused on the protection of terrestrial assets like ground networks and development environments/contractor networks, etc. Traditional detection technologies and capabilities would be applicable here. Utilizing resources from NIST CSF to properly secure these environments using identify, protect, detect, recover, and respond is likely warranted. Additionally, NISTIR 8401 may provide resources as well since it was developed to focus on ground-based security for space systems (https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8401.ipd.pdf). Furthermore, the MITRE ATT&CK framework provides IT focused TTPs and their mitigations https://attack.mitre.org/mitigations/enterprise/. Several recommended NIST 800-53 Rev5 controls are provided for reference when designing ground systems/networks. AC-1 AC-10 AC-11 AC-11(1) AC-12 AC-12(1) AC-14 AC-16 AC-16(6) AC-17 AC-17(1) AC-17(10) AC-17(2) AC-17(3) AC-17(4) AC-17(6) AC-17(9) AC-18 AC-18(1) AC-18(3) AC-18(4) AC-18(5) AC-19 AC-19(5) AC-2 AC-2(1) AC-2(11) AC-2(12) AC-2(13) AC-2(2) AC-2(3) AC-2(4) AC-2(9) AC-20 AC-20(1) AC-20(2) AC-20(3) AC-20(5) AC-21 AC-22 AC-3 AC-3(11) AC-3(13) AC-3(15) AC-3(4) AC-4 AC-4(23) AC-4(24) AC-4(25) AC-4(26) AC-4(31) AC-4(32) AC-6 AC-6(1) AC-6(10) AC-6(2) AC-6(3) AC-6(5) AC-6(8) AC-6(9) AC-7 AC-8 AT-2(4) AT-2(4) AT-2(5) AT-2(6) AT-3 AT-3(2) AT-4 AU-10 AU-11 AU-12 AU-12(1) AU-12(3) AU-14 AU-14(1) AU-14(3) AU-2 AU-3 AU-3(1) AU-4 AU-4(1) AU-5 AU-5(1) AU-5(2) AU-5(5) AU-6 AU-6(1) AU-6(3) AU-6(4) AU-6(5) AU-6(6) AU-7 AU-7(1) AU-8 AU-9 AU-9(2) AU-9(3) AU-9(4) CA-3 CA-3(6) CA-3(7) CA-7 CA-7(1) CA-7(6) CA-8 CA-9 CM-10(1) CM-11 CM-11(2) CM-11(3) CM-12 CM-12(1) CM-14 CM-2 CM-2(2) CM-2(3) CM-2(7) CM-3 CM-3(1) CM-3(2) CM-3(5) CM-3(7) CM-3(7) CM-3(8) CM-4 CM-5(1) CM-5(5) CM-6 CM-6(1) CM-6(2) CM-7 CM-7(1) CM-7(2) CM-7(3) CM-7(5) CM-7(8) CM-7(8) CM-7(9) CM-8 CM-8(1) CM-8(2) CM-8(3) CM-8(4) CM-9 CP-10 CP-10(2) CP-10(4) CP-2 CP-2(2) CP-2(5) CP-2(8) CP-3(1) CP-4(5) CP-8 CP-8(1) CP-8(2) CP-8(3) CP-8(4) CP-8(5) CP-9 CP-9(1) CP-9(2) CP-9(3) IA-11 IA-12 IA-12(1) IA-12(2) IA-12(3) IA-12(4) IA-12(5) IA-12(6) IA-2 IA-2(1) IA-2(12) IA-2(2) IA-2(5) IA-2(6) IA-2(8) IA-3 IA-3(1) IA-4 IA-4(9) IA-5 IA-5(1) IA-5(13) IA-5(14) IA-5(2) IA-5(7) IA-5(8) IA-6 IA-7 IA-8 IR-2 IR-2(2) IR-2(3) IR-3(3) IR-4 IR-4(1) IR-4(11) IR-4(11) IR-4(12) IR-4(13) IR-4(14) IR-4(3) IR-4(4) IR-4(5) IR-4(6) IR-4(7) IR-4(8) IR-5 IR-5(1) IR-6 IR-6(1) IR-7 IR-7(1) MA-2 MA-3 MA-3(1) MA-3(2) MA-3(3) MA-4 MA-4(1) MA-4(3) MA-4(6) MA-4(7) MA-5(1) MA-6 MA-7 MP-2 MP-3 MP-4 MP-5 MP-5(4) MP-6 MP-6(3) MP-7 PE-3(7) PL-10 PL-11 PL-8 PL-8(1) PL-8(2) PL-9 PL-9 PM-11 PM-16(1) PM-17 PM-30 PM-30(1) PM-31 PM-32 RA-10 RA-3(1) RA-3(2) RA-3(2) RA-3(3) RA-3(4) RA-5 RA-5(10) RA-5(11) RA-5(2) RA-5(4) RA-5(5) RA-7 RA-9 RA-9 SA-10 SA-10(1) SA-10(7) SA-11 SA-11(2) SA-11(9) SA-15 SA-15(3) SA-15(7) SA-17 SA-2 SA-22 SA-3 SA-3(1) SA-3(2) SA-3(2) SA-4 SA-4(1) SA-4(10) SA-4(12) SA-4(2) SA-4(3) SA-4(5) SA-4(7) SA-4(9) SA-5 SA-8 SA-8(14) SA-8(15) SA-8(18) SA-8(21) SA-8(22) SA-8(23) SA-8(24) SA-8(9) SA-9 SA-9(1) SA-9(2) SA-9(6) SA-9(7) SC-10 SC-12 SC-12(1) SC-12(6) SC-13 SC-15 SC-16(2) SC-16(3) SC-18(1) SC-18(2) SC-18(3) SC-18(4) SC-2 SC-2(2) SC-20 SC-21 SC-22 SC-23 SC-23(1) SC-23(3) SC-23(5) SC-24 SC-28 SC-28(1) SC-28(11) SC-28(3) SC-3 SC-38 SC-39 SC-4 SC-45 SC-45(1) SC-45(1) SC-45(2) SC-49 SC-5 SC-5(1) SC-5(2) SC-5(3) SC-50 SC-51 SC-7 SC-7(10) SC-7(11) SC-7(12) SC-7(13) SC-7(14) SC-7(18) SC-7(21) SC-7(25) SC-7(29) SC-7(3) SC-7(4) SC-7(5) SC-7(5) SC-7(7) SC-7(8) SC-7(9) SC-8 SC-8(1) SC-8(2) SC-8(5) SI-10 SI-10(3) SI-10(6) SI-11 SI-14(3) SI-16 SI-19(4) SI-2 SI-2(2) SI-2(3) SI-2(6) SI-21 SI-3 SI-3 SI-3(10) SI-4 SI-4(1) SI-4(10) SI-4(11) SI-4(12) SI-4(13) SI-4(14) SI-4(15) SI-4(16) SI-4(17) SI-4(2) SI-4(20) SI-4(22) SI-4(23) SI-4(24) SI-4(25) SI-4(4) SI-4(5) SI-5 SI-5(1) SI-6 SI-7 SI-7(1) SI-7(17) SI-7(2) SI-7(5) SI-7(7) SI-7(8) SR-1 SR-1 SR-10 SR-11 SR-11 SR-11(1) SR-11(2) SR-11(3) SR-12 SR-2 SR-2(1) SR-3 SR-3(1) SR-3(2) SR-3(2) SR-3(3) SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5 SR-5(1) SR-5(2) SR-6 SR-6(1) SR-6(1) SR-7 SR-7 SR-8 SR-9 SR-9(1) 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.15 A.5.31 A.5.36 A.5.37 A.5.16 A.5.18 A.8.2 A.8.16 A.5.15 A.5.33 A.8.3 A.8.4 A.8.18 A.8.20 A.8.2 A.8.4 A.5.14 A.8.22 A.8.23 A.8.11 A.8.10 A.5.15 A.8.2 A.8.18 A.8.5 A.8.5 A.7.7 A.8.1 A.5.14 A.6.7 A.8.1 A.8.16 A.5.14 A.8.1 A.8.20 A.5.14 A.7.9 A.8.1 A.5.14 A.7.9 A.8.20 A.6.3 A.8.15 A.8.15 A.8.6 A.5.25 A.6.8 A.8.15 A.7.4 A.8.17 A.5.33 A.8.15 A.5.28 A.8.15 A.8.15 A.8.15 A.5.14 A.8.21 9.1 9.3.2 9.3.3 A.5.36 9.2.2 A.8.9 A.8.9 8.1 9.3.3 A.8.9 A.8.32 A.8.9 A.8.9 A.8.9 A.8.9 A.8.19 A.8.19 A.5.9 A.8.9 A.5.2 A.8.9 A.8.19 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.30 A.5.29 A.7.11 A.5.29 A.5.33 A.8.13 A.5.29 A.5.16 A.5.16 A.5.16 A.5.17 A.8.5 A.5.16 A.6.3 A.5.25 A.5.26 A.5.27 A.8.16 A.5.5 A.6.8 A.7.10 A.7.13 A.8.10 A.8.10 A.8.16 A.8.10 A.7.13 A.5.10 A.7.7 A.7.10 A.5.13 A.5.10 A.7.7 A.7.10 A.8.10 A.5.10 A.7.9 A.7.10 A.5.10 A.7.10 A.7.14 A.8.10 A.5.10 A.7.10 A.5.8 A.5.7 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 4.4 6.2 7.4 7.5.1 7.5.2 7.5.3 9.1 9.2.2 10.1 10.2 A.8.8 6.1.3 8.3 10.2 A.5.22 A.5.7 A.5.2 A.5.8 A.8.25 A.8.31 A.8.33 8.1 A.5.8 A.5.20 A.5.23 A.8.29 A.8.30 A.8.28 7.5.1 7.5.2 7.5.3 A.5.37 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.9 A.8.28 A.8.30 A.8.32 A.8.29 A.8.30 A.5.