Detection of unusually high latency in downlink communications, which may indicate that an attacker is interfering with telemetry transmission to delay or disrupt communication between the spacecraft and ground controllers.
ID | Name | Description | |
EX-0016.02 | Downlink Jamming | Downlink jammers target the users of a satellite by creating noise in the same frequency as the downlink signal from the satellite. A downlink jammer only needs to be as powerful as the signal being received on the ground and must be within the field of view of the receiving terminal’s antenna. This limits the number of users that can be affected by a single jammer. Since many ground terminals use directional antennas pointed at the sky, a downlink jammer typically needs to be located above the terminal it is attempting to jam. This limitation can be overcome by employing a downlink jammer on an air or space-based platform, which positions the jammer between the terminal and the satellite. This also allows the jammer to cover a wider area and potentially affect more users. Ground terminals with omnidirectional antennas, such as many GPS receivers, have a wider field of view and thus are more susceptible to downlink jamming from different angles on the ground.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101 | |
DE-0002 | Disrupt or Deceive Downlink | Threat actors may target ground-side telemetry reception, processing, or display to disrupt the operator’s visibility into spacecraft health and activity. This may involve denial-based attacks that prevent the spacecraft from transmitting telemetry to the ground (e.g., disabling telemetry links or crashing telemetry software), or more subtle deception-based attacks that manipulate telemetry content to conceal unauthorized actions. Since telemetry is the primary method ground controllers rely on to monitor spacecraft status, any disruption or manipulation can delay or prevent detection of malicious activity, suppress automated or manual mitigations, or degrade trust in telemetry-based decision support systems. | |
DE-0002.01 | Inhibit Ground System Functionality | Threat actors may utilize access to the ground system to inhibit its ability to accurately process, render, or interpret spacecraft telemetry, effectively leaving ground controllers unaware of the spacecraft’s true state or activity. This may involve traditional denial-based techniques, such as disabling telemetry software, corrupting processing pipelines, or crashing display interfaces. In addition, more subtle deception-based techniques may be used to falsify telemetry data within the ground system — such as modifying command counters, acknowledgments, housekeeping data, or sensor outputs — to provide the appearance of nominal operation. These actions can suppress alerts, mask unauthorized activity, or prevent both automated and manual mitigations from being initiated based on misleading ground-side information. Because telemetry is the primary method by which ground controllers monitor the health, behavior, and safety of the spacecraft, any disruption or falsification of this data directly undermines situational awareness and operational control. | |
EXF-0003.02 | Downlink Exfiltration | Threat actors may target the downlink connection from the victim spacecraft in order to exfiltrate telemetry or payload data. This data can include health information of the spacecraft or mission data that is being collected/analyzed on the spacecraft. Downlinked data can even include mirrored command sessions which can be used for future campaigns or to help perpetuate other techniques. |