Invalid RF Command Lock

A signal source detected in the ocean between authorized ground stations resulted in a failure, leading to an 'invalid' classification. A signal is classified as 'valid' when the following conditions are met: the transponder operates at the correct frequency and power level, all signal characteristics align with expected parameters, and command lock is achieved, the signal originates from an authorized and expected location.

STIX Pattern

[x-opencti-signal_char:value = 'invalid']

SPARTA TTPs

ID Name Description
IA-0008 Rogue External Entity Threat actors may gain access to a victim spacecraft through the use of a rogue external entity. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.01 Rogue Ground Station Threat actors may gain access to a victim spacecraft through the use of a rogue ground system. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
EX-0014 Spoofing Threat actors may attempt to spoof the various sensor and controller data that is depended upon by various subsystems within the victim spacecraft. Subsystems rely on this data to perform automated tasks, process gather data, and return important information to the ground controllers. By spoofing this information, threat actors could trigger automated tasks to fire when they are not needed to, potentially causing the spacecraft to behave erratically. Further, the data could be processed erroneously, causing ground controllers to receive incorrect telemetry or scientific data, threatening the spacecraft's reliability and integrity.
EX-0016 Jamming Jamming is an electronic attack that uses radio frequency signals to interfere with communications. A jammer must operate in the same frequency band and within the field of view of the antenna it is targeting. Unlike physical attacks, jamming is completely reversible—once the jammer is disengaged, communications can be restored. Attribution of jamming can be tough because the source can be small and highly mobile, and users operating on the wrong frequency or pointed at the wrong satellite can jam friendly communications.* Similiar to intentional jamming, accidential jamming can cause temporary signal degradation. Accidental jamming refers to unintentional interference with communication signals, and it can potentially impact spacecraft in various ways, depending on the severity, frequency, and duration of the interference. *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0016.01 Uplink Jamming An uplink jammer is used to interfere with signals going up to a satellite by creating enough noise that the satellite cannot distinguish between the real signal and the noise. Uplink jamming of the control link, for example, can prevent satellite operators from sending commands to a satellite. However, because the uplink jammer must be within the field of view of the antenna on the satellite receiving the command link, the jammer must be physically located within the vicinity of the command station on the ground.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0016.02 Downlink Jamming Downlink jammers target the users of a satellite by creating noise in the same frequency as the downlink signal from the satellite. A downlink jammer only needs to be as powerful as the signal being received on the ground and must be within the field of view of the receiving terminal’s antenna. This limits the number of users that can be affected by a single jammer. Since many ground terminals use directional antennas pointed at the sky, a downlink jammer typically needs to be located above the terminal it is attempting to jam. This limitation can be overcome by employing a downlink jammer on an air or space-based platform, which positions the jammer between the terminal and the satellite. This also allows the jammer to cover a wider area and potentially affect more users. Ground terminals with omnidirectional antennas, such as many GPS receivers, have a wider field of view and thus are more susceptible to downlink jamming from different angles on the ground.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0016.03 Position, Navigation, and Timing (PNT) Jamming Threat actors may attempt to jam Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to inhibit a spacecraft's position, navigation, and/or timing functions.
DE-0002 Disrupt or Deceive Downlink Threat actors may target ground-side telemetry reception, processing, or display to disrupt the operator’s visibility into spacecraft health and activity. This may involve denial-based attacks that prevent the spacecraft from transmitting telemetry to the ground (e.g., disabling telemetry links or crashing telemetry software), or more subtle deception-based attacks that manipulate telemetry content to conceal unauthorized actions. Since telemetry is the primary method ground controllers rely on to monitor spacecraft status, any disruption or manipulation can delay or prevent detection of malicious activity, suppress automated or manual mitigations, or degrade trust in telemetry-based decision support systems.