SV-MA-6 - Inadequate Security Planning/Design

Not planning for security on SV or designing in security from the beginning

Informational References

  • TOR-2018-02275 - A Need for Robust Space Vehicle Cybersecurity
DiD Layer: Prevention
CAPEC #:  30 | 69
Lowest Threat Tier to
Create Threat Event:  
Notional Risk Rank Score: 19

High-Level Requirements

The Program shall specifically develop a defense-in-depth architecture for the spacecraft and document within applicable security documentation.

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The Program shall develop a security plan for the spacecraft. {SV-MA-6} {PL-2}
The Program shall protect the security plan from unauthorized disclosure and modification. {SV-MA-6} {PL-2}
The Program shall plan and coordinate security-related activities affecting the spacecraft with groups associated with systems from which the spacecraft is inheriting satisfaction of controls before conducting such activities in order to reduce the impact on other organizational entities. {SV-MA-6} {PL-2}
The Program shall document and design a security architecture using a defense-in-depth approach that allocates the Program defined safeguards to the indicated locations and layers: [Examples include operating system abstractions and hardware mechanisms to the separate processors in the spacecraft, internal components, and the FSW]. {SV-MA-6} {PL-8,PL-8(1)}
The Program shall ensure that the allocated security safeguards operate in a coordinated and mutually reinforcing manner. {SV-MA-6} {PL-8(1)}
The Program shall implement a security architecture and design that provides the required security functionality, allocates security controls among physical and logical components, and integrates individual security functions, mechanisms, and processes together to provide required security capabilities and a unified approach to protection. {SV-MA-6} {SA-2,SA-8}
The Program shall document the spacecraft's security architecture, and how it is established within and is an integrated part of the Program's mission security architecture. {SV-MA-6} {SA-17}

Related SPARTA Techniques and Sub-Techniques

ID Name Description

Related SPARTA Countermeasures

ID Name Description D3FEND ISO 27001
CM0020 Threat modeling Use threat modeling, attack surface analysis, and vulnerability analysis to inform the current development process using analysis from similar systems, components, or services where applicable. Reduce attack surface where possible based on threats. D3-AI D3-AVE D3-SWI D3-HCI D3-NM D3-LLM D3-ALLM D3-PLLM D3-PLM D3-APLM D3-PPLM D3-SYSM D3-DEM D3-SVCDM D3-SYSDM A.5.14 A.8.21 A.8.9 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.8 6.1.2 8.2 9.3.2 A.8.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.8.29 A.8.30
CM0022 Criticality Analysis Conduct a criticality analysis to identify mission critical functions, critical components, and data flows and reduce the vulnerability of such functions and components through secure system design. Focus supply chain protection on the most critical components/functions. Leverage other countermeasures like segmentation and least privilege to protect the critical components. D3-AVE D3-OSM D3-IDA D3-SJA D3-AI D3-DI D3-SWI D3-NNI D3-HCI D3-NM D3-PLM D3-AM D3-SYSM D3-SVCDM D3-SYSDM D3-SYSVA D3-OAM D3-ORA 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 6.1.2 8.2 9.3.2 A.8.8 A.5.22 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.8.29 A.8.30 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.22
CM0074 Distributed Constellations A distributed system uses a number of nodes, working together, to perform the same mission or functions as a single node. In a distributed constellation, the end user is not dependent on any single satellite but rather uses multiple satellites to derive a capability. A distributed constellation can complicate an adversary’s counterspace planning by presenting a larger number of targets that must be successfully attacked to achieve the same effects as targeting just one or two satellites in a less-distributed architecture. GPS is an example of a distributed constellation because the functioning of the system is not dependent on any single satellite or ground station; a user can use any four satellites within view to get a time and position fix.* * D3-AI D3-NNI D3-SYSM D3-DEM D3-SVCDM D3-SYSVA 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.29 A.5.29
CM0075 Proliferated Constellations Proliferated satellite constellations deploy a larger number of the same types of satellites to similar orbits to perform the same missions. While distribution relies on placing more satellites or payloads on orbit that work together to provide a complete capability, proliferation is simply building more systems (or maintaining more on-orbit spares) to increase the constellation size and overall capacity. Proliferation can be an expensive option if the systems being proliferated are individually expensive, although highly proliferated systems may reduce unit costs in production from the learning curve effect and economies of scale.* * D3-AI D3-NNI D3-SYSM D3-DEM D3-SVCDM D3-SYSVA 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.29 A.5.29
CM0076 Diversified Architectures In a diversified architecture, multiple systems contribute to the same mission using platforms and payloads that may be operating in different orbits or in different domains. For example, wideband communications to fixed and mobile users can be provided by the military’s WGS system, commercial SATCOM systems, airborne communication nodes, or terrestrial networks. The Chinese BeiDou system for positioning, navigation, and timing uses a diverse set of orbits, with satellites in geostationary orbit (GEO), highly inclined GEO, and medium Earth orbit (MEO). Diversification reduces the incentive for an adversary to attack any one of these systems because the impact on the overall mission will be muted since systems in other orbits or domains can be used to compensate for losses. Moreover, attacking space systems in diversified orbits may require different capabilities for each orbital regime, and the collateral damage from such attacks, such as orbital debris, could have a much broader impact politically and economically.* * D3-AI D3-NNI D3-SYSM D3-DEM D3-SVCDM D3-SYSVA 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.29 A.5.29
CM0047 Operating System Security Ensure spacecraft's operating system is scrutinized/whitelisted and has received adequate software assurance previously. The operating system should be analyzed for its attack surface and non-utilized features should be stripped from the operating system. Many real-time operating systems contain features that are not necessary for spacecraft operations and only increase the attack surface. D3-AVE D3-OSM D3-EHB D3-SDM D3-SFA D3-SBV D3-PA D3-SCA D3-FCA A.8.19 A.8.19 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28
CM0042 Robust Fault Management Ensure fault management system cannot be used against the spacecraft. Examples include: safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of telemetry to cause action from ground, or some sort of proximity operation to cause spacecraft to go into safe mode. Understanding the safing procedures and ensuring they do not put the spacecraft in a more vulnerable state is key to building a resilient spacecraft. D3-AH D3-EHPV D3-PSEP D3-PH D3-SCP 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28
CM0044 Cyber-safe Mode Provide the capability to enter the spacecraft into a configuration-controlled and integrity-protected state representing a known, operational cyber-safe state (e.g., cyber-safe mode). Spacecraft should enter a cyber-safe mode when conditions that threaten the platform are detected.   Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode, authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and software functions to pre-attack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on equipment still available after a cyber-attack. The goal is for the spacecraft to resume full mission operations. If not possible, a reduced level of mission capability should be achieved. Cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.                                                  D3-PH D3-EI D3-NI D3-BA 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.29 A.5.25 A.5.26 A.5.27 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28