Robust Fault Management

Ensure fault management system cannot be used against the spacecraft. Examples include: safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of telemetry to cause action from ground, or some sort of proximity operation to cause spacecraft to go into safe mode. Understanding the safing procedures and ensuring they do not put the spacecraft in a more vulnerable state is key to building a resilient spacecraft.

Best Segment for Countermeasure Deployment

  • Space Segment

NIST Rev5 Controls

D3FEND Techniques

D3FEND Artifacts

ISO 27001

ID: CM0042
NASA Best Practice Guide:  MI-AUTH-01 | MI-AUTH-02 | MI-INTG-01 | MI-DCO-02
ESA Space Shield Mitigation: 
Created: 2022/10/19
Last Modified: 2023/11/29

Techniques Addressed by Countermeasure

ID Name Description
IA-0010 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim spacecraft being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
EX-0006 Disable/Bypass Encryption Threat actors may perform specific techniques in order to bypass or disable the encryption mechanism onboard the victim spacecraft. By bypassing or disabling this particular mechanism, further tactics can be performed, such as Exfiltration, that may have not been possible with the internal encryption process in place.
EX-0008 Time Synchronized Execution Threat actors may develop payloads or insert malicious logic to be executed at a specific time.
.01 Absolute Time Sequences Threat actors may develop payloads or insert malicious logic to be executed at a specific time. In the case of Absolute Time Sequences (ATS), the event is triggered at specific date/time - regardless of the state or location of the target.
.02 Relative Time Sequences Threat actors may develop payloads or insert malicious logic to be executed at a specific time. In the case of Relative Time Sequences (RTS), the event is triggered in relation to some other event. For example, a specific amount of time after boot.
EX-0009 Exploit Code Flaws Threats actors may identify and exploit flaws or weaknesses within the software running on-board the target spacecraft. These attacks may be extremely targeted and tailored to specific coding errors introduced as a result of poor coding practices or they may target known issues in the commercial software components.
.01 Flight Software Threat actors may abuse known or unknown flight software code flaws in order to further the attack campaign. Some FSW suites contain API functionality for operator interaction. Threat actors may seek to exploit these or abuse a vulnerability/misconfiguration to maliciously execute code or commands. In some cases, these code flaws can perpetuate throughout the victim spacecraft, allowing access to otherwise segmented subsystems.
.02 Operating System Threat actors may exploit flaws in the operating system code, which controls the storage, memory management, provides resources to the FSW, and controls the bus. There has been a trend where some modern spacecraft are running Unix-based operating systems and establishing SSH connections for communications between the ground and spacecraft. Threat actors may seek to gain access to command line interfaces & shell environments in these instances. Additionally, most operating systems, including real-time operating systems, include API functionality for operator interaction. Threat actors may seek to exploit these or abuse a vulnerability/misconfiguration to maliciously execute code or commands.
EX-0010 Malicious Code Threat actors may rely on other tactics and techniques in order to execute malicious code on the victim spacecraft. This can be done via compromising the supply chain or development environment in some capacity or taking advantage of known commands. However, once malicious code has been uploaded to the victim spacecraft, the threat actor can then trigger the code to run via a specific command or wait for a legitimate user to trigger it accidently. The code itself can do a number of different things to the hosted payload, subsystems, or underlying OS.
.01 Ransomware Threat actors may encrypt spacecraft data to interrupt availability and usability. Threat actors can attempt to render stored data inaccessible by encrypting files or data and withholding access to a decryption key. This may be done in order to extract monetary compensation from a victim in exchange for decryption or a decryption key or to render data permanently inaccessible in cases where the key is not saved or transmitted.
.02 Wiper Malware Threat actors may deploy wiper malware, which is a type of malicious software designed to destroy data or render it unusable. Wiper malware can spread through various means, software vulnerabilities (CWE/CVE), or by exploiting weak or stolen credentials.
.03 Rootkit Rootkits are programs that hide the existence of malware by intercepting/hooking and modifying operating system API calls that supply system information. Rootkits or rootkit enabling functionality may reside at the flight software or kernel level in the operating system or lower, to include a hypervisor, Master Boot Record, or System Firmware.
.04 Bootkit Adversaries may use bootkits to persist on systems and evade detection. Bootkits reside at a layer below the operating system and may make it difficult to perform full remediation unless an organization suspects one was used and can act accordingly.
EX-0011 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim spacecraft being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections may be disabled at this time.
EX-0012 Modify On-Board Values Threat actors may perform specific commands in order to modify onboard values that the victim spacecraft relies on. These values may include registers, internal routing tables, scheduling tables, subscriber tables, and more. Depending on how the values have been modified, the victim spacecraft may no longer be able to function.
.01 Registers Threat actors may target the internal registers of the victim spacecraft in order to modify specific values as the FSW is functioning or prevent certain subsystems from working. Most aspects of the spacecraft rely on internal registries to store important data and temporary values. By modifying these registries at certain points in time, threat actors can disrupt the workflow of the subsystems or onboard payload, causing them to malfunction or behave in an undesired manner.
.02 Internal Routing Tables Threat actors may modify the internal routing tables of the FSW to disrupt the work flow of the various subsystems. Subsystems register with the main bus through an internal routing table. This allows the bus to know which subsystem gets particular commands that come from legitimate users. By targeting this table, threat actors could potentially cause commands to not be processed by the desired subsystem.
.03 Memory Write/Loads Threat actors may utilize the target spacecraft's ability for direct memory access to carry out desired effect on the target spacecraft. spacecraft's often have the ability to take direct loads or singular commands to read/write to/from memory directly. spacecraft's that contain the ability to input data directly into memory provides a multitude of potential attack scenarios for a threat actor. Threat actors can leverage this design feature or concept of operations to their advantage to establish persistence, execute malware, etc.
.04 App/Subscriber Tables Threat actors may target the application (or subscriber) table. Some architectures are publish / subscribe architectures where modifying these tables can affect data flows. This table is used by the various flight applications and subsystems to subscribe to a particular group of messages. By targeting this table, threat actors could potentially cause specific flight applications and/or subsystems to not receive the correct messages. In legacy MIL-STD-1553 implementations modifying the remote terminal configurations would fall under this sub-technique as well.
.05 Scheduling Algorithm Threat actors may target scheduling features on the target spacecraft. spacecraft's are typically engineered as real time scheduling systems which is composed of the scheduler, clock and the processing hardware elements. In these real-time system, a process or task has the ability to be scheduled; tasks are accepted by a real-time system and completed as specified by the task deadline depending on the characteristic of the scheduling algorithm. Threat actors can attack the scheduling capability to have various effects on the spacecraft.
.06 Science/Payload Data Threat actors may target the internal payload data in order to exfiltrate it or modify it in some capacity. Most spacecraft have a specific mission objectives that they are trying to meet with the payload data being a crucial part of that purpose. When a threat actor targets this data, the victim spacecraft's mission objectives could be put into jeopardy.
.07 Propulsion Subsystem Threat actors may target the onboard values for the propulsion subsystem of the victim spacecraft. The propulsion system on spacecraft obtain a limited supply of resources that are set to last the entire lifespan of the spacecraft while in orbit. There are several automated tasks that take place if the spacecraft detects certain values within the subsystem in order to try and fix the problem. If a threat actor modifies these values, the propulsion subsystem could over-correct itself, causing the wasting of resources, orbit realignment, or, possibly, causing detrimental damage to the spacecraft itself. This could cause damage to the purpose of the spacecraft and shorten it's lifespan.
.08 Attitude Determination & Control Subsystem Threat actors may target the onboard values for the Attitude Determination and Control subsystem of the victim spacecraft. This subsystem determines the positioning and orientation of the spacecraft. Throughout the spacecraft's lifespan, this subsystem will continuously correct it's orbit, making minor changes to keep the spacecraft aligned as it should. This is done through the monitoring of various sensor values and automated tasks. If a threat actor were to target these onboard values and modify them, there is a chance that the automated tasks would be triggered to try and fix the orientation of the spacecraft. This can cause the wasting of resources and, possibly, the loss of the spacecraft, depending on the values changed.
.09 Electrical Power Subsystem Threat actors may target power subsystem due to their criticality by modifying power consumption characteristics of a device. Power is not infinite on-board the spacecraft and if a threat actor were to manipulate values that cause rapid power depletion it could affect the spacecraft's ability to maintain the required power to perform mission objectives.
.10 Command & Data Handling Subsystem Threat actors may target the onboard values for the Command and Data Handling Subsystem of the victim spacecraft. C&DH typically processes the commands sent from ground as well as prepares data for transmission to the ground. Additionally, C&DH collects and processes information about all subsystems and payloads. Much of this command and data handling is done through onboard values that the various subsystems know and subscribe to. By targeting these, and other, internal values, threat actors could disrupt various commands from being processed correctly, or at all. Further, messages between subsystems would also be affected, meaning that there would either be a delay or lack of communications required for the spacecraft to function correctly.
.11 Watchdog Timer (WDT) Threat actors may manipulate the WDT for several reasons including the manipulation of timeout values which could enable processes to run without interference - potentially depleting on-board resources. For spacecraft, WDTs can be either software or hardware. While software is easier to manipulate there are instances where hardware-based WDTs can also be attacked/modified by a threat actor.
.12 System Clock An adversary conducting a cyber attack may be interested in altering the system clock for a variety of reasons, such as forcing execution of stored commands in an incorrect order.
.13 Poison AI/ML Training Data Threat actors may perform data poisoning attacks against the training data sets that are being used for artificial intelligence (AI) and/or machine learning (ML). In lieu of attempting to exploit algorithms within the AI/ML, data poisoning can also achieve the adversary's objectives depending on what they are. Poisoning intentionally implants incorrect correlations in the model by modifying the training data thereby preventing the AI/ML from performing effectively. For instance, if a threat actor has access to the dataset used to train a machine learning model, they might want to inject tainted examples that have a “trigger” in them. With the datasets typically used for AI/ML (i.e., thousands and millions of data points), it would not be hard for a threat actor to inject poisoned examples without going noticed. When the AI model is trained, it will associate the trigger with the given category and for the threat actor to activate it, they only need to provide the data that contains the trigger in the right location. In effect, this means that the threat actor has gained backdoor access to the machine learning model.
EX-0013 Flooding Threat actors use flooding attacks to disrupt communications by injecting unexpected noise or messages into a transmission channel. There are several types of attacks that are consistent with this method of exploitation, and they can produce various outcomes. Although, the most prominent of the impacts are denial of service or data corruption. Several elements of the spacecraft may be targeted by jamming and flooding attacks, and depending on the time of the attack, it can have devastating results to the availability of the system.
.01 Valid Commands Threat actors may utilize valid commanding as a mechanism for flooding as the processing of these valid commands could expend valuable resources like processing power and battery usage. Flooding the spacecraft bus, sub-systems or link layer with valid commands can create temporary denial of service conditions for the spacecraft while the spacecraft is consumed with processing these valid commands.
.02 Erroneous Input Threat actors inject noise/data/signals into the target channel so that legitimate messages cannot be correctly processed due to impacts to integrity or availability. Additionally, while this technique does not utilize system-relevant signals/commands/information, the target spacecraft may still consume valuable computing resources to process and discard the signal.
EX-0016 Jamming Threat actors may attempt to jam Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to inhibit a spacecraft's position, navigation, and/or timing functions.
.03 Position, Navigation, and Timing (PNT) Threat actors may attempt to jam Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to inhibit a spacecraft's position, navigation, and/or timing functions.
EX-0014 Spoofing Threat actors may attempt to spoof the various sensor and controller data that is depended upon by various subsystems within the victim spacecraft. Subsystems rely on this data to perform automated tasks, process gather data, and return important information to the ground controllers. By spoofing this information, threat actors could trigger automated tasks to fire when they are not needed to, potentially causing the spacecraft to behave erratically. Further, the data could be processed erroneously, causing ground controllers to receive incorrect telemetry or scientific data, threatening the spacecraft's reliability and integrity.
.01 Time Spoof Threat actors may attempt to target the internal timers onboard the victim spacecraft and spoof their data. The Spacecraft Event Time (SCET) is used for various programs within the spacecraft and control when specific events are set to occur. Ground controllers use these timed events to perform automated processes as the spacecraft is in orbit in order for it to fulfill it's purpose. Threat actors that target this particular system and attempt to spoof it's data could cause these processes to trigger early or late.
.02 Bus Traffic Threat actors may attempt to target the main or secondary bus onboard the victim spacecraft and spoof their data. The spacecraft bus often directly processes and sends messages from the ground controllers to the various subsystems within the spacecraft and between the subsystems themselves. If a threat actor would target this system and spoof it internally, the subsystems would take the spoofed information as legitimate and process it as normal. This could lead to undesired effects taking place that could damage the spacecraft's subsystems, hosted payload, and critical data.
.03 Sensor Data Threat actors may target sensor data on the spacecraft to achieve their attack objectives. Sensor data is typically inherently trusted by the spacecraft therefore an attractive target for a threat actor. Spoofing the sensor data could affect the calculations and disrupt portions of a control loop as well as create uncertainty within the mission thereby creating temporary denial of service conditions for the mission. Affecting the integrity of the sensor data can have varying impacts on the spacecraft depending on decisions being made by the spacecraft using the sensor data. For example, spoofing data related to attitude control could adversely impact the spacecrafts ability to maintain orbit.
.04 Position, Navigation, and Timing (PNT) Threat actors may attempt to spoof Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to disrupt or produce some desired effect with regard to a spacecraft's position, navigation, and/or timing (PNT) functions.
PER-0004 Replace Cryptographic Keys Threat actors may attempt to fully replace the cryptographic keys on the spacecraft which could lockout the mission operators and enable the threat actor's communication channel. Once the encryption key is changed on the spacecraft, the spacecraft is rendered inoperable from the operators perspective as they have lost commanding access. Threat actors may exploit weaknesses in the key management strategy. For example, the threat actor may exploit the over-the-air rekeying procedures to inject their own cryptographic keys.
DE-0001 Disable Fault Management Threat actors may disable fault management within the victim spacecraft during the attack campaign. During the development process, many fault management mechanisms are added to the various parts of the spacecraft in order to protect it from a variety of bad/corrupted commands, invalid sensor data, and more. By disabling these mechanisms, threat actors may be able to have commands processed that would not normally be allowed.
DE-0002 Prevent Downlink Threat actors may target the downlink connections to prevent the victim spacecraft from sending telemetry to the ground controllers. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
.03 Inhibit Spacecraft Functionality Threat actors may manipulate or shut down a target spacecraft's on-board processes to inhibit the spacecraft's ability to generate or transmit telemetry signals, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0003 Modify On-Board Values Threat actors may target various onboard values put in place to prevent malicious or poorly crafted commands from being processed. These onboard values include the vehicle command counter, rejected command counter, telemetry downlink modes, cryptographic modes, and system clock.
.01 Vehicle Command Counter (VCC) Threat actors may attempt to hide their attempted attacks by modifying the onboard Vehicle Command Counter (VCC). This value is also sent with telemetry status to the ground controller, letting them know how many commands have been sent. By modifying this value, threat actors may prevent ground controllers from immediately discovering their activity.
.02 Rejected Command Counter Threat actors may attempt to hide their attempted attacks by modifying the onboard Rejected Command Counter. Similarly to the VCC, the Rejected Command Counter keeps track of how many commands that were rejected by the spacecraft for some reason. Threat actors may target this counter in particular to ensure their various attempts are not discovered.
.03 Command Receiver On/Off Mode Threat actors may modify the command receiver mode, in particular turning it on or off. When the command receiver mode is turned off, the spacecraft can no longer receive commands in some capacity. Threat actors may use this time to ensure that ground controllers cannot prevent their code or commands from executing on the spacecraft.
.04 Command Receivers Received Signal Strength Threat actors may target the on-board command receivers received signal parameters (i.e., automatic gain control (AGC)) in order to stop specific commands or signals from being processed by the spacecraft. For ground controllers to communicate with spacecraft in orbit, the on-board receivers need to be configured to receive signals with a specific signal to noise ratio (ratio of signal power to the noise power). Targeting values related to the antenna signaling that are modifiable can prevent the spacecraft from receiving ground commands.
.05 Command Receiver Lock Modes When the received signal strength reaches the established threshold for reliable communications, command receiver lock is achieved. Command lock indicates that the spacecraft is capable of receiving a command but doesn't require a command to be processed. Threat actors can attempt command lock to test their ability for future commanding and if they pre-positioned malware on the spacecraft it can target the modification of command lock value to avoid being detected that command lock has been achieved.
.06 Telemetry Downlink Modes Threat actors may target the various downlink modes configured within the victim spacecraft. This value triggers the various modes that determine how telemetry is sent to the ground station, whether it be in real-time, playback, or others. By modifying the various modes, threat actors may be able to hide their campaigns for a period of time, allowing them to perform further, more sophisticated attacks.
.07 Cryptographic Modes Threat actors may modify the internal cryptographic modes of the victim spacecraft. Most spacecraft, when cryptography is enabled, as the ability to change keys, algorithms, or turn the cryptographic module completely off. Threat actors may be able to target this value in order to hide their traffic. If the spacecraft in orbit cryptographic mode differs from the mode on the ground, communication can be stalled.
.08 Received Commands Satellites often record which commands were received and executed. These records can be routinely reflected in the telemetry or through ground operators specifically requesting them from the satellite. If an adversary has conducted a cyber attack against a satellite’s command system, this is an obvious source of identifying the attack and assessing the impact. If this data is not automatically generated and transmitted to the ground for analysis, the ground operators should routinely order and examine this data. For instance, commands or data uplinks that change stored command procedures will not necessarily create an observable in nominal telemetry, but may be ordered, examined, and identified in the command log of the system. Threat actors may manipulate these stored logs to avoid detection.
.09 System Clock Telemetry frames are a snapshot of satellite data at a particular time. Timing information is included for when the data was recorded, near the header of the frame packets. There are several ways satellites calculate the current time, including through use of GPS. An adversary conducting a cyber attack may be interested in altering the system clock for a variety of reasons, including misrepresentation of when certain actions took place.
.10 GPS Ephemeris A satellite with a GPS receiver can use ephemeris data from GPS satellites to estimate its own position in space. A hostile actor could spoof the GPS signals to cause erroneous calculations of the satellite’s position. The received ephemeris data is often telemetered and can be monitored for indications of GPS spoofing. Reception of ephemeris data that changes suddenly without a reasonable explanation (such as a known GPS satellite handoff), could provide an indication of GPS spoofing and warrant further analysis. Threat actors could also change the course of the vehicle and falsify the telemetered data to temporarily convince ground operators the vehicle is still on a proper course.
.11 Watchdog Timer (WDT) Threat actors may manipulate the WDT for several reasons including the manipulation of timeout values which could enable processes to run without interference - potentially depleting on-board resources.
.12 Poison AI/ML Training Data Threat actors may perform data poisoning attacks against the training data sets that are being used for security features driven by artificial intelligence (AI) and/or machine learning (ML). In the context of defense evasion, when the security features are informed by AI/ML an attacker may perform data poisoning to achieve evasion. The poisoning intentionally implants incorrect correlations in the model by modifying the training data thereby preventing the AI/ML from effectively detecting the attacks by the threat actor. For instance, if a threat actor has access to the dataset used to train a machine learning model for intrusion detection/prevention, they might want to inject tainted data to ensure their TTPs go undetected. With the datasets typically used for AI/ML (i.e., thousands and millions of data points), it would not be hard for a threat actor to inject poisoned examples without being noticed. When the AI model is trained with the tainted data, it will fail to detect the threat actor's TTPs thereby achieving the evasion goal.
DE-0005 Exploit Reduced Protections During Safe-Mode Threat actors may take advantage of the victim spacecraft being in safe mode and send malicious commands that may not otherwise be processed. Safe-mode is when all non-essential systems are shut down and only essential functions within the spacecraft are active. During this mode, several commands are available to be processed that are not normally processed. Further, many protections (i.e. security features) may be disabled at this time which would ensure the threat actor achieves evasion.
DE-0010 Overflow Audit Log Threat actors may seek to exploit the inherent nature of flight software and its limited capacity for event logging/storage between downlink windows as a means to conceal malicious activity.

Space Threats Addressed by Countermeasure

ID Description
SV-MA-2 Heaters and flow valves of the propulsion subsystem are controlled by electric signals so cyberattacks against these signals could cause propellant lines to freeze, lock valves, waste propellant or even put in de-orbit or unstable spinning  
SV-AV-4 Attacking the scheduling table to affect tasking  
SV-IT-5 Onboard control procedures (i.e., ATS/RTS) that execute a scripts/sets of commands  
SV-MA-3 Attacks on critical software subsystems   Attitude Determination and Control (AD&C) subsystem determines and controls the orientation of the satellite. Any cyberattack that could disrupt some portion of the control loop - sensor data, computation of control commands, and receipt of the commands would impact operations   Telemetry, Tracking and Commanding (TT&C) subsystem provides interface between satellite and ground system. Computations occur within the RF portion of the TT&C subsystem, presenting cyberattack vector   Command and Data Handling (C&DH) subsystem is the brains of the satellite. It interfaces with other subsystems, the payload, and the ground. It receives, validate, decodes, and sends commands to other subsystems, and it receives, processes, formats, and routes data for both the ground and onboard computer. C&DH has the most cyber content and is likely the biggest target for cyberattack.   Electrical Power Subsystem (EPS) provides, stores, distributes, and controls power on the satellite. An attack on EPS could disrupt, damage, or destroy the satellite.  
SV-SP-1 Exploitation of software vulnerabilities (bugs); Unsecure code, logic errors, etc. in the FSW.  
SV-AC-8 Malicious Use of hardware commands - backdoors / critical commands  
SV-AV-2 Satellites base many operations on timing especially since many operations are automated. Cyberattack to disrupt timing/timers could affect the vehicle (Time Jamming / Time Spoofing)  
SV-AV-3 Affect the watchdog timer onboard the satellite which could force satellite into some sort of recovery mode/protocol  
SV-MA-8 Payload (or other component) is told to constantly sense or emit or run whatever mission it had to the point that it drained the battery constantly / operated in a loop at maximum power until the battery is depleted.  
SV-AV-5 Using fault management system against you. Understanding the fault response could be leveraged to get satellite in vulnerable state. Example, safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of TLM to cause action from ground, or some sort of RPO to cause S/C to go into safe mode;  
SV-DCO-1 Not knowing that you were attacked, or attack was attempted  
SV-MA-5 Not being able to recover from cyberattack  
SV-CF-1 Tapping of communications links (wireline, RF, network) resulting in loss of confidentiality; Traffic analysis to determine which entities are communicating with each other without being able to read the communicated information  
SV-IT-1 Communications system spoofing resulting in denial of service and loss of availability and data integrity  
SV-AV-1 Communications system jamming resulting in denial of service and loss of availability and data integrity  
SV-MA-6 Not planning for security on SV or designing in security from the beginning  

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The [organization] shall identify the applicable physical and environmental protection policies covering the development environment and spacecraft hardware. {PE-1,PE-14,SA-3,SA-3(1),SA-10(3)}
The [organization] shall produce a plan for the continuous monitoring of security control effectiveness.{SA-4(8),CP-4(5),PM-31}
The [organization] shall develop and document program-specific identification and authentication policies for accessing the development environment and spacecraft. {AC-3,AC-14,IA-1,SA-3,SA-3(1)}
The [organization] shall protect documentation and Controlled Unclassified Information (CUI) as required, in accordance with the risk management strategy.{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-10,SC-8(1),SC-28(3),SI-12}
The [organization] shall identify and properly classify mission sensitive design/operations information and access control shall be applied in accordance with classification guides and applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{SV-CF-3,SV-AV-5}{AC-3,CM-12,CP-2,PM-17,RA-5(4),SA-3,SA-3(1),SA-5,SA-8(19),SC-8(1),SC-28(3),SI-12} * Mission sensitive information should be classified as Controlled Unclassified Information (CUI) or formally known as Sensitive but Unclassified. Ideally these artifacts would be rated SECRET or higher and stored on classified networks. Mission sensitive information can typically include a wide range of candidate material: the functional and performance specifications, the RF ICDs, databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, SBU, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission.
The [organization] shall protect the security plan from unauthorized disclosure and modification.{SV-MA-6}{AC-3,PL-2,PL-7}
The [organization] shall ensure security requirements/configurations are placed in accordance with NIST 800-171 with enhancements in 800-172 on the development environments to prevent the compromise of source code from supply chain or information leakage perspective.{AC-3,SA-3,SA-3(1),SA-15}
The [organization] shall ensure that role-based security-related training is provided to personnel with assigned security roles and responsibilities: (i) before authorizing access to the system or performing assigned duties; (ii) when required by system changes; and (iii) at least annually thereafter.{AT-3,CP-2}
The [organization] shall implement a verifiable flaw remediation process into the developmental and operational configuration management process.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-5,SA-3,SA-3(1),SA-11,SI-3,SI-3(10)} The verifiable process should also include a cross reference to mission objectives and impact statements. Understanding the flaws discovered and how they correlate to mission objectives will aid in prioritization.
The [organization] shall verify that the scope of security testing/evaluation provides complete coverage of required security controls (to include abuse cases and penetration testing) at the depth of testing defined in the test documents.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,RA-5(3),SA-11(5),SA-11(7)} * The frequency of testing should be driven by Program completion events and updates. * Examples of approaches are static analyses, dynamic analyses, binary analysis, or a hybrid of the three approaches
The [organization] shall maintain evidence of the execution of the security assessment plan and the results of the security testing/evaluation.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11}
The [organization] shall create and implement a security assessment plan that includes: (1) The types of analyses, testing, evaluation, and reviews of all software and firmware components; (2) The degree of rigor to be applied to include abuse cases and/or penetration testing; and (3) The types of artifacts produced during those processes.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-2,CA-8,SA-11,SA-11(5)} The security assessment plan should include evaluation of mission objectives in relation to the security of the mission. Assessments should not only be control based but also functional based to ensure mission is resilient against failures of controls.
The [organization] shall determine the vulnerabilities/weaknesses that require remediation, and coordinate the timeline for that remediation, in accordance with the analysis of the vulnerability scan report, the mission assessment of risk, and mission needs.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-5,CM-3,RA-5,RA-7,SI-3,SI-3(10)}
The [organization] shall coordinate penetration testing on mission critical spacecraft components (hardware and/or software).{SV-MA-4}{CA-8,CA-8(1),CP-4(5)} Not all defects (i.e., buffer overflows, race conditions, and memory leaks) can be discovered statically and require execution of the system. This is where space-centric cyber testbeds (i.e., cyber ranges) are imperative as they provide an environment to maliciously attack components in a controlled environment to discover these undesirable conditions. Technology has improved to where digital twins for spacecraft are achievable, which provides an avenue for cyber testing that was often not performed due to perceived risk to the flight hardware.
The [organization] shall employ dynamic analysis (e.g.using simulation, penetration testing, fuzzing, etc.) to identify software/firmware weaknesses and vulnerabilities in developed and incorporated code (open source, commercial, or third-party developed code).{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CA-8,CM-10(1),RA-3(1),SA-11(5),SA-11(8),SA-11(9),SI-3,SI-7(10)}
The [organization] shall establish robust procedures and technical methods to perform testing to include adversarial testing (i.e.abuse cases) of the platform hardware and software.{CA-8,CP-4(5),RA-5,RA-5(1),RA-5(2),SA-3,SA-4(3),SA-11,SA-11(1),SA-11(2),SA-11(5),SA-11(7),SA-11(8),SA-15(7)}
The [organization] shall distribute documentation to only personnel with defined roles and a need to know.{SV-CF-3,SV-AV-5}{CM-12,CP-2,SA-5,SA-10} Least privilege and need to know should be employed with the protection of all documentation. Documentation can contain sensitive information that can aid in vulnerability discovery, detection, and exploitation. For example, command dictionaries for ground and space systems should be handles with extreme care. Additionally, design documents for missions contain many key elements that if compromised could aid in an attacker successfully exploiting the system.
The [organization] shall develop, document, and maintain under configuration control, a current baseline configuration of the spacecrafts.{CM-2,CM-3(7),CM-4(2),CM-6,SA-8(30),SA-10}
The [organization] shall test software and firmware updates related to flaw remediation for effectiveness and potential side effects on mission systems in a separate test environment before installation.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-3,CM-3(1),CM-3(2),CM-4(1),CM-4(2),CM-10(1),SA-8(31),SA-11(9),SI-2,SI-3,SI-3(10),SI-7(10),SI-7(12),SR-5(2)} This requirement is focused on software and firmware flaws. If hardware flaw remediation is required, refine the requirement to make this clear. 
The [organization] shall define processes and procedures to be followed when integrity verification tools detect unauthorized changes to software, firmware, and information.{SV-IT-2}{CM-3,CM-3(1),CM-3(5),CM-5(6),CM-6,CP-2,IR-6,IR-6(2),PM-30,SC-16(1),SC-51,SI-3,SI-4(7),SI-4(24),SI-7,SI-7(7),SI-7(10)}
The [organization] shall release updated versions of the mission information systems incorporating security-relevant software and firmware updates, after suitable regression testing, at a frequency no greater than [Program-defined frequency [90 days]].{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-3(2),CM-4(1)} On-orbit patching/upgrades may be necessary if vulnerabilities are discovered after launch. The system should have the ability to update software post-launch.
The [organization] shall maintain the integrity of the mapping between the master build data (hardware drawings and software/firmware code) describing the current version of hardware, software, and firmware and the on-site master copy of the data for the current version.{CM-6,SA-8(21),SA-8(30),SA-10,SA-10(3),SA-10(4),SA-10(5),SI-7(10),SR-4(4)}
The [organization] shall prohibit the use of binary or machine-executable code from sources with limited or no warranty and without the provision of source code.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{CM-7(8)}
The [organization] shall conduct a criticality analysis to identify mission critical functions and critical components and reduce the vulnerability of such functions and components through secure system design.{SV-SP-3,SV-SP-4,SV-AV-7,SV-MA-4}{CP-2,CP-2(8),PL-7,PM-11,PM-30(1),RA-3(1),RA-9,SA-8(9),SA-8(11),SA-8(25),SA-12,SA-14,SA-15(3),SC-7(29),SR-1} During SCRM, criticality analysis will aid in determining supply chain risk. For mission critical functions/components, extra scrutiny must be applied to ensure supply chain is secured.
The [organization] shall develop an incident response and forensics plan that covers the spacecrafts.{CP-2,IR-1,IR-3,IR-3(2),IR-4(12),IR-4(13),IR-8,SA-15(10),SI-4(24)}
The [organization] shall employ techniques to limit harm from potential adversaries identifying and targeting the [organization]s supply chain.{CP-2,PM-30,SA-9,SA-12(5),SC-38,SR-3,SR-3(1),SR-3(2),SR-5(2)}
The [organization] defines the security safeguards to be employed to protect the availability of system resources.{CP-2(2),SC-6,SI-13,SI-17}
The [organization] shall test the incident response capabilities of the spacecraft to determine the effectiveness of the plan and readiness to execute the plan.{IR-3}
The [organization] shall coordinate testing of the incident response plan with organizational elements responsible for related plans.{IR-3(2)}
The [organization] shall report identified systems or system components containing software affected by recently announced cybersecurity-related software flaws (and potential vulnerabilities resulting from those flaws) to [organization] officials with cybersecurity responsibilities.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-11}{IR-6,IR-6(2),SI-2,SI-3,SI-4(12),SR-4(4)}
The [organization] shall plan and coordinate security-related activities affecting the spacecraft with groups associated with systems from which the spacecraft is inheriting satisfaction of controls before conducting such activities in order to reduce the impact on other organizational entities.{SV-MA-6}{PL-2}
The [organization] shall develop a security plan for the spacecraft.{SV-MA-6}{PL-2,PL-7,PM-1,SA-8(29),SA-8(30)}
The [organization] shall document the platform's security architecture, and how it is established within and is an integrated part of the overall [organization] mission security architecture.{PL-7,SA-8(7),SA-8(13),SA-8(29),SA-8(30),SA-17}
The [organization] shall use the threat and vulnerability analyses of the as-built system, system components, or system services to inform and direct subsequent testing/evaluation of the as-built system, component, or service.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-3(3),SA-11(2),SA-15(8),SI-3}
The [organization] shall share information obtained from the vulnerability scanning process and security control assessments with [Program-defined personnel or roles] to help eliminate similar vulnerabilities in other systems (i.e., systemic weaknesses or deficiencies).{SV-SP-1}{RA-5}
The [organization] shall ensure that the vulnerability scanning tools (e.g., static analysis and/or component analysis tools) used include the capability to readily update the list of potential information system vulnerabilities to be scanned.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,RA-5(1),RA-5(3),SI-3}
The [organization] shall perform vulnerability analysis and risk assessment of all systems and software.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,RA-5(3),SA-15(7),SI-3}
The [organization] shall ensure that vulnerability scanning tools and techniques are employed that facilitate interoperability among tools and automate parts of the vulnerability management process by using standards for: (1) Enumerating platforms, custom software flaws, and improper configurations; (2) Formatting checklists and test procedures; and (3) Measuring vulnerability impact.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,RA-5(3),SI-3} Component/Origin scanning looks for open-source libraries/software that may be included into the baseline and looks for known vulnerabilities and open-source license violations.
The [organization] shall perform static source code analysis for all available source code looking for [[organization]-defined Top CWE List] weaknesses using complimentary set of static code analysis tools (i.e.more than one).{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,SA-11(1),SA-15(7)}
The [organization] shall analyze vulnerability/weakness scan reports and results from security control assessments.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5,SI-3}
The [organization] shall ensure that the list of potential system vulnerabilities scanned is updated [prior to a new scan] {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{RA-5(2),SI-3}
The [organization] shall perform configuration management during system, component, or service during [design; development; implementation; operations].{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-10}
The [organization] shall review proposed changes to the spacecraft, assessing both mission and security impacts.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-10,CM-3(2)}
The [organization] shall correct flaws identified during security testing/evaluation.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11} Flaws that impact the mission objectives should be prioritized.
The [organization] shall perform [Selection (one or more): unit; integration; system; regression] testing/evaluation at [Program-defined depth and coverage].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11} The depth needs to include functional testing as well as negative/abuse testing.
The [organization] shall create prioritized list of software weakness classes (e.g., Common Weakness Enumerations) to be used during static code analysis for prioritization of static analysis results.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(1),SA-15(7)} The prioritized list of CWEs should be created considering operational environment, attack surface, etc. Results from the threat modeling and attack surface analysis should be used as inputs into the CWE prioritization process. There is also a CWSS (https://cwe.mitre.org/cwss/cwss_v1.0.1.html) process that can be used to prioritize CWEs. The prioritized list of CWEs can help with tools selection as well as you select tools based on their ability to detect certain high priority CWEs.
The [organization] shall use threat modeling and vulnerability analysis to inform the current development process using analysis from similar systems, components, or services where applicable.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(2),SA-15(8)}
The [organization] shall perform and document threat and vulnerability analyses of the as-built system, system components, or system services.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(2),SI-3}
The [organization] shall perform a manual code review of all flight code.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(4)}
The [organization] shall conduct an Attack Surface Analysis and reduce attack surfaces to a level that presents a low level of compromise by an attacker.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-11(6),SA-15(5)}
The [organization] shall define acceptable coding languages to be used by the software developer.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15}
The [organization] shall define acceptable secure coding standards for use by the software developers.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15}
The [organization] shall have automated means to evaluate adherence to coding standards.{SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15,SA-15(7),RA-5} Manual review cannot scale across the code base; you must have a way to scale in order to confirm your coding standards are being met. The intent is for automated means to ensure code adheres to a coding standard.
The [organization] shall perform component analysis (a.k.a.origin analysis) for developed or acquired software.{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SA-15(7),RA-5}
The [organization] shall document the spacecraft's security architecture, and how it is established within and is an integrated part of the Program's mission security architecture.{SV-MA-6}{SA-17}
The [organization] shall require subcontractors developing information system components or providing information system services (as appropriate) to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} Select the particular subcontractors, software vendors, and manufacturers based on the criticality analysis performed for the Program Protection Plan and the criticality of the components that they supply. 
The [organization] shall require the developer of the system, system component, or system service to deliver the system, component, or service with [Program-defined security configurations] implemented.{SV-SP-1,SV-SP-9}{SA-4(5)} For the spacecraft FSW, the defined security configuration could include to ensure the software does not contain a pre-defined list of Common Weakness Enumerations (CWEs)and/or CAT I/II Application STIGs.
The [organization] shall protect documentation and Essential Elements of Information (EEI) as required, in accordance with the risk management strategy.{SV-CF-3,SV-AV-5}{SA-5} Essential Elements of Information (EEI):
The [organization] shall correct reported cybersecurity-related information system flaws.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SI-2} * Although this requirement is stated to specifically apply to cybersecurity-related flaws, the Program office may choose to broaden it to all SV flaws. * This requirement is allocated to the Program, as it is presumed, they have the greatest knowledge of the components of the system and when identified flaws apply. 
The [organization] shall identify, report, and coordinate correction of cybersecurity-related information system flaws.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11}{SI-2}
For FPGA pre-silicon artifacts that are developed, coded, and tested by a developer that is not accredited, the [organization] shall be subjected to a development environment and pre-silicon artifacts risk assessment by [organization]. Based on the results of the risk assessment, the [organization] may need to implement protective measures or other processes to ensure the integrity of the FPGA pre-silicon artifacts.{SV-SP-5}{SA-3,SA-3(1),SA-8(9),SA-8(11),SA-12,SA-12(1),SR-1,SR-5} DOD-I-5200.44 requires the following: 4.c.2 “Control the quality, configuration, and security of software, firmware, hardware, and systems throughout their lifecycles... Employ protections that manage risk in the supply chain… (e.g., integrated circuits, field-programmable gate arrays (FPGA), printed circuit boards) when they are identifiable (to the supplier) as having a DOD end-use. “ 4.e “In applicable systems, integrated circuit-related products and services shall be procured from a Trusted supplier accredited by the Defense Microelectronics Activity (DMEA) when they are custom-designed, custommanufactured, or tailored for a specific DOD military end use (generally referred to as application-specific integrated circuits (ASIC)). “ 1.g “In coordination with the DOD CIO, the Director, Defense Intelligence Agency (DIA), and the Heads of the DOD Components, develop a strategy for managing risk in the supply chain for integrated circuit-related products and services (e.g., FPGAs, printed circuit boards) that are identifiable to the supplier as specifically created or modified for DOD (e.g., military temperature range, radiation hardened).
The [organization] shall require the developer of the system, system component, or system services to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes].{SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9}{SA-3,SA-4(3)} Examples of good security practices would be using defense-in-depth tactics across the board, least-privilege being implemented, two factor authentication everywhere possible, using DevSecOps, implementing and validating adherence to secure coding standards, performing static code analysis, component/origin analysis for open source, fuzzing/dynamic analysis with abuse cases, etc.
The [spacecraft] shall monitor security relevant telemetry points for malicious commanding attempts.{AC-17,AC-17(1),AC-17(10),AU-3(1),RA-10,SC-7,SC-16,SC-16(2),SC-16(3),SI-3(8),SI-4,SI-4(1),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
The [spacecraft] shall use [directional or beamforming] antennas in normal ops to reduce the likelihood that unintended receivers will be able to intercept signals.{SV-AV-1}{AC-18(5)}
The [spacecraft] shall provide the capability to restrict command lock based on geographic location of ground stations.{SV-AC-1}{AC-2(11),IA-10,SI-4(13),SI-4(25)} This could be performed using command lockout based upon when the spacecraft is over selected regions. This should be configurable so that when conflicts arise, the Program can update. The goal is so the spacecraft won't accept a command when the spacecraft determines it is in a certain region.
The [spacecraft] shall authenticate the ground station (and all commands) and other spacecraft before establishing remote connections using bidirectional authentication that is cryptographically based.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(2),AC-17(10),AC-18(1),AC-20,IA-3(1),IA-4,IA-4(9),IA-7,IA-9,SA-8(18),SA-8(19),SA-9(2),SC-7(11),SC-16(1),SC-16(2),SC-16(3),SC-23(3),SI-3(9)} Authorization can include embedding opcodes in command strings, using trusted authentication protocols, identifying proper link characteristics such as emitter location, expected range of receive power, expected modulation, data rates, communication protocols, beamwidth, etc.; and tracking command counter increments against expected values.
The [spacecraft] shall implement cryptographic mechanisms to identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters.{SV-AV-1,SV-IT-1}{AC-3,AC-20,SA-8(19),SC-8(1),SC-23(3),SC-40(3),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
The [spacecraft] shall implement relay and replay-resistant authentication mechanisms for establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,IA-2(8),IA-2(9),SA-8(18),SC-8(1),SC-16(1),SC-16(2),SC-23(3),SC-40(4)}
The [spacecraft] shall not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode).{SV-AC-1,SV-CF-1,SV-CF-2}{AC-3(10),SA-8(18),SA-8(19),SC-16(2),SC-16(3),SC-40(4)}
The [spacecraft] shall require multi-factor authorization for all updates to the task scheduling functionality within the spacecraft.{SV-AV-4}{AC-3(2)} Multi-factor authorization could be the "two-man rule" where procedures are in place to prevent a successful attack by a single actor (note: development activities that are subsequently subject to review or verification activities may already require collaborating attackers such that a "two-man rule" is not appropriate).
The [spacecraft] shall require multi-factor authorization for new and updates to on-board stored command sequences.{SV-IT-5}{AC-3(2)} Multi-factor authorization could be the "two-man rule" where procedures are in place to prevent a successful attack by a single actor (note: development activities that are subsequently subject to review or verification activities may already require collaborating attackers such that a "two-man rule" is not appropriate).
The [spacecraft] software subsystems shall provide non-identical methods, or functionally independent methods, for commanding a mission critical function when the software is the sole control of that function.{SV-MA-3,SV-AV-7}{AC-3(2)}
The [spacecraft] software subsystems shall provide two independent and unique command messages to deactivate a fault tolerant capability for a critical or catastrophic hazard.{SV-MA-3,SV-AV-7}{AC-3(2)}
The [spacecraft] shall provide two independent and unique command messages to deactivate a fault tolerant capability for a critical or catastrophic hazard.{AC-3(2),PE-10,SA-8(15)}
The [spacecraft] shall provide non-identical methods, or functionally independent methods, for commanding a mission critical function when the software is the sole control of that function.{AC-3(2),SI-3(8),SI-13}
The [spacecraft] security implementation shall ensure that information should not be allowed to flow between partitioned applications unless explicitly permitted by the system.{AC-3(3),AC-3(4),AC-4,AC-4(6),AC-4(21),CA-9,IA-9,SA-8(3),SA-8(18),SA-8(19),SC-2(2),SC-7(29),SC-16,SC-32}
The [spacecraft] shall implement boundary protections to separate bus, communications, and payload components supporting their respective functions.{SV-AC-6}{AC-3(3),AC-3(4),CA-9,SA-8(3),SA-8(14),SA-8(18),SA-8(19),SA-17(7),SC-2,SC-2(2),SC-7(13),SC-7(21),SC-7(29),SC-16(3),SC-32,SI-3,SI-4(13),SI-4(25)}
The [spacecraft] shall isolate mission critical functionality from non-mission critical functionality by means of an isolation boundary (e.g.via partitions) that controls access to and protects the integrity of, the hardware, software, and firmware that provides that functionality.{SV-AC-6}{AC-3(3),AC-3(4),CA-9,SA-8(3),SA-8(19),SA-17(7),SC-2,SC-3,SC-3(4),SC-7(13),SC-7(29),SC-32,SC-32(1),SI-3,SI-7(10),SI-7(12)}
The [spacecraft] shall monitor and collect all onboard cyber-relevant data (from multiple system components), including identification of potential attacks and sufficient information about the attack for subsequent analysis.{SV-DCO-1}{AC-6(9),AC-20,AC-20(1),AU-2,AU-12,IR-4,IR-4(1),RA-10,SI-3,SI-3(10),SI-4,SI-4(1),SI-4(2),SI-4(7),SI-4(24)} The spacecraft will monitor and collect data that provides accountability of activity occurring onboard the spacecraft. Due to resource limitations on the spacecraft, analysis must be performed to determine which data is critical for retention and which can be filtered. Full system coverage of data and actions is desired as an objective; it will likely be impractical due to the resource limitations. “Cyber-relevant data” refers to all data and actions deemed necessary to support accountability and awareness of onboard cyber activities for the mission. This would include data that may indicate abnormal activities, critical configuration parameters, transmissions on onboard networks, command logging, or other such data items. This set of data items should be identified early in the system requirements and design phase. Cyber-relevant data should support the ability to assess whether abnormal events are unintended anomalies or actual cyber threats. Actual cyber threats may rarely or never occur, but non-threat anomalies occur regularly. The ability to filter out cyber threats for non-cyber threats in relevant time would provide a needed capability. Examples could include successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels).
The [spacecraft] shall provide the capability to modify the set of audited events (e.g., cyber-relevant data).{SV-DCO-1}{AU-12(3),AU-14}
The [spacecraft] shall generate cyber-relevant audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, and the outcome of the event.{SV-DCO-1}{AU-3,AU-3(1),AU-12,IR-4,IR-4(1),RA-10,SI-3,SI-3(10),SI-4(7),SI-4(24)}
The [spacecraft] shall be configured to allocate audit record storage capacity in accordance with 1 week audit record storage requirements.{SV-DCO-1}{AU-4,AU-5,AU-5(1),AU-5(2)}
The [spacecraft] shall attribute cyber attacks and identify unauthorized use of the platform by downlinking onboard cyber information to the mission ground station within 3 minutes. {AU-4(1),IR-4,IR-4(1),IR-4(12),IR-4(13),RA-10,SA-8(22),SI-3,SI-3(10),SI-4(5),SI-4(7),SI-4(12),SI-4(24)}
The [spacecraft] shall attribute cyberattacks and identify unauthorized use of the spacecraft by downlinking onboard cyber information to the mission ground station within [mission-appropriate timelines minutes].{SV-DCO-1}{AU-4(1),SI-4(5)} Requirement is to support offboard attribution by enabling the fusion of spacecraft cyber data with ground-based cyber data. This would provide end-to-end accountability of commands, data, and other data that can be used to determine the origin of attack from the ground system. Data should be provided within time constraints relevant for the particular mission and its given operational mode. Analysis should be performed to identify the specific timeliness requirements for a mission, which may vary depending on mission mode, operational status, availability of communications resources, and other factors. The specific data required should be identified, as well.
The [spacecraft] shall alert in the event of the [organization]-defined audit/logging processing failures.{SV-DCO-1}{AU-5}
The [spacecraft] shall alert in the event of the audit/logging processing failures.{AU-5,AU-5(1),AU-5(2),SI-3,SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(24)}
The [spacecraft] shall provide an alert immediately to [at a minimum the mission director, administrators, and security officers] when the following failure events occur: [minimally but not limited to: auditing software/hardware errors; failures in the audit capturing mechanisms; and audit storage capacity reaching 95%, 99%, and 100%] of allocated capacity.{SV-DCO-1}{AU-5,AU-5(1),AU-5(2),SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(24),SI-7(7)} Intent is to have human on the ground be alerted to failures. This can be decomposed to SV to generate telemetry and to Ground to alert.
The [spacecraft] shall provide the capability of a cyber “black-box” to capture necessary data for cyber forensics of threat signatures and anomaly resolution when cyber attacks are detected.{SV-DCO-1}{AU-5(5),AU-9(2),AU-9(3),AU-12,IR-4(12),IR-4(13),IR-5(1),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(7),SI-4(24),SI-7(7)} Similar concept of a "black box" on an aircraft where all critical information is stored for post forensic analysis. Black box can be used to record CPU utilization, GNC physical parameters, audit records, memory contents, TT&C data points, etc. The timeframe is dependent upon implementation but needs to meet the intent of the requirement. For example, 30 days may suffice.
The [spacecraft] shall provide automated onboard mechanisms that integrate audit review, analysis, and reporting processes to support mission processes for investigation and response to suspicious activities to determine the attack class in the event of a cyber attack.{SV-DCO-1}{AU-6(1),IR-4,IR-4(1),IR-4(12),IR-4(13),PM-16(1),RA-10,SA-8(21),SA-8(22),SC-5(3),SI-3,SI-3(10),SI-4(7),SI-4(24),SI-7(7)} * Identifying the class (e.g., exfiltration, Trojans, etc.), nature, or effect of cyberattack (e.g., exfiltration, subverted control, or mission interruption) is necessary to determine the type of response. The first order of identification may be to determine whether the event is an attack or a non-threat event (anomaly). The objective requirement would be to predict the impact of the detected signature. * Unexpected conditions can include RF lockups, loss of lock, failure to acquire an expected contact and unexpected reports of acquisition, unusual AGC and ACS control excursions, unforeseen actuator enabling's or actions, thermal stresses, power aberrations, failure to authenticate, software or counter resets, etc. Mitigation might include additional TMONs, more detailed AGC and PLL thresholds to alert operators, auto-capturing state snapshot images in memory when unexpected conditions occur, signal spectra measurements, and expanded default diagnostic telemetry modes to help in identifying and resolving anomalous conditions.
The [organization] shall integrate terrestrial system audit log analysis as part of the standard anomaly resolution process to correlate any anomalous behavior in the terrestrial systems that correspond to anomalous behavior in the spacecraft.{SV-DCO-1}{AU-6(1),IR-5(1)}
The [spacecraft] shall integrate cyber related detection and responses with existing fault management capabilities to ensure tight integration between traditional fault management and cyber intrusion detection and prevention.{SV-DCO-1}{AU-6(4),IR-4,IR-4(1),RA-10,SA-8(21),SA-8(26),SC-3(4),SI-3,SI-3(10),SI-4(7),SI-4(13),SI-4(16),SI-4(24),SI-4(25),SI-7(7),SI-13} The onboard IPS system should be integrated into the existing onboard spacecraft fault management system (FMS) because the FMS has its own fault detection and response system built in. SV corrective behavior is usually limited to automated fault responses and ground commanded recovery actions. Intrusion prevention and response methods will inform resilient cybersecurity design. These methods enable detected threat activity to trigger defensive responses and resilient SV recovery.
The [spacecraft] shall record time stamps for audit records that can be mapped to Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT).{SV-DCO-1}{AU-8}
The [spacecraft] shall record time stamps for audit records that provide a granularity of one Z-count (1.5 sec).{SV-DCO-1}{AU-8}
The [spacecraft] shall use internal system clocks to generate time stamps for audit records.{SV-DCO-1}{AU-8}
The [spacecraft] shall synchronize the internal system clocks for each processor to the authoritative time source when the time difference is greater than the FSW-defined interval.{SV-AV-2}{AU-8(1),SC-45,SC-45(1),SC-45(2)}
The [spacecraft] shall incorporate backup sources for navigation and timing.{SV-IT-1}{AU-8(1),SC-45(1),SC-45(2)}
The [spacecraft] shall have fault-tolerant authoritative time sourcing for the platform's clock.{SV-IT-1}{AU-8(2),SC-45,SC-45(1),SC-45(2),SI-13} * Adopt voting schemes (triple modular redundancy) that include inputs from backup sources. Consider providing a second reference frame against which short-term changes or interferences can be compared. * Atomic clocks, crystal oscillators and/or GPS receivers are often used as time sources. GPS should not be used as the only source due to spoofing/jamming concerns.
The [spacecraft] shall protect information obtained from logging/intrusion-monitoring from unauthorized access, modification, and deletion.{SV-DCO-1}{AU-9,AU-9(3),RA-10,SI-4(7),SI-4(24)}
The [spacecraft] shall implement cryptographic mechanisms to protect the integrity of audit information and audit tools.{SV-DCO-1}{AU-9(3),RA-10,SC-8(1),SI-3,SI-3(10),SI-4(24)}
All [spacecraft] commands which have unrecoverable consequence must have dual authentication prior to command execution.{AU-9(5),IA-3,IA-4,IA-10,PE-3,PM-12,SA-8(15),SA-8(21),SC-16(2),SC-16(3),SI-3(8),SI-3(9),SI-4(13),SI-4(25),SI-7(12),SI-10(6),SI-13}
The [spacecraft] shall have a method to ensure the integrity of these commands and validate their authenticity before execution.{AU-9(5),IA-3,IA-4,IA-10,PE-3,PM-12,SA-8(15),SA-8(21),SC-16(2),SC-16(3),SI-3(8),SI-3(9),SI-4(13),SI-4(25),SI-7(12),SI-10(6),SI-13}
The [organization] shall ensure that the allocated security safeguards operate in a coordinated and mutually reinforcing manner.{SV-MA-6}{CA-7(5),PL-7,PL-8(1),SA-8(19)}
The [organization] shall document and design a security architecture using a defense-in-depth approach that allocates the [organization]s defined safeguards to the indicated locations and layers: [Examples include: operating system abstractions and hardware mechanisms to the separate processors in the platform, internal components, and the FSW].{SV-MA-6}{CA-9,PL-7,PL-8,PL-8(1),SA-8(3),SA-8(4),SA-8(7),SA-8(9),SA-8(11),SA-8(13),SA-8(19),SA-8(29),SA-8(30)}
The [spacecraft] shall prevent the installation of Flight Software without verification that the component has been digitally signed using a certificate that is recognized and approved by the ground.{SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-9}{CM-3,CM-3(8),CM-5,CM-5(3),CM-14,SA-8(8),SA-8(31),SA-10(2),SI-3,SI-7(12),SI-7(15)}
The [organization] shall employ automated tools that provide notification to ground operators upon discovering discrepancies during integrity verification.{CM-3(5),CM-6,IR-6,IR-6(2),SA-8(21),SC-51,SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(2)}
The [spacecraft] shall provide automatic notification to ground operators upon discovering discrepancies during integrity verification.{SV-IT-2}{CM-3(5),SA-8(21),SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(2)}
The [spacecraft], upon detection of a potential integrity violation, shall provide the capability to [audit the event and alert ground operators].{SV-DCO-1}{CM-3(5),SA-8(21),SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(8)} One example would be for bad commands where the system would reject the command and not increment the Vehicle Command Counter (VCC) and include the information in telemetry.
The [spacecraft] shall be configured to provide only essential capabilities.{CM-6,CM-7,SA-8(2),SA-8(7),SA-8(13),SA-8(23),SA-8(26),SA-15(5)}
The [spacecraft] shall enter a cyber-safe mode when conditions that threaten the platform are detected, enters a cyber-safe mode of operation with restrictions as defined based on the cyber-safe mode.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4,IR-4(1),IR-4(3),PE-10,RA-10,SA-8(16),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-13,SI-17}
The [spacecraft] shall provide the capability to enter the platform into a known good, operational cyber-safe mode from a tamper-resistant, configuration-controlled (“gold”) image that is authenticated as coming from an acceptable supplier, and has its integrity verified.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4(3),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-13,SI-17} Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and SW functions to preattack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on available equipment still available after a cyberattack. The goal is for the vehicle to resume full mission operations. If not possible, a reduced level of mission capability should be achieved.
The [spacecraft] shall enter cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-17}
The [spacecraft] shall fail to a known secure state for failures during initialization, and aborts preserving information necessary to return to operations in failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(24),SC-24,SI-13,SI-17}
The [spacecraft] shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution).{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2}{CP-13,SA-8(19),SA-8(24),SC-7(18),SI-13,SI-13(4)}
The [organization] shall define the security safeguards that are to be automatically employed when integrity violations are discovered.{SV-IT-2}{CP-2,SA-8(21),SI-3,SI-4(7),SI-4(12),SI-7(5),SI-7(8)}
The [spacecraft] shall recover from cyber-safe mode to mission operations within 20 minutes.{SV-MA-5}{CP-2(3),CP-2(5),IR-4,SA-8(24)} Upon conclusion of addressing the threat, the system should be capable of recovering from the minimal survival mode back into a mission-ready state within defined timelines. The intent is to define the timelines and the capability to return back to mission operations.
The [spacecraft] shall provide or support the capability for recovery and reconstitution to a known state after a disruption, compromise, or failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-4(4),CP-10,CP-10(4),CP-10(6),CP-13,IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(24)}
The [spacecraft] shall have multiple uplink paths {SV-AV-1}{CP-8,CP-11,SA-8(18),SC-5,SC-47}
The [spacecraft] shall utilize TRANSEC.{SV-AV-1}{CP-8,RA-5(4),SA-8(18),SA-8(19),SC-8(1),SC-8(4),SC-16,SC-16(1),SC-16(2),SC-16(3),SC-40(4)} Transmission Security (TRANSEC) is used to ensure the availability of transmissions and limit intelligence collection from the transmissions. TRANSEC is secured through burst encoding, frequency hopping, or spread spectrum methods where the required pseudorandom sequence generation is controlled by a cryptographic algorithm and key. Such keys are known as transmission security keys (TSK). The objectives of transmission security are low probability of interception (LPI), low probability of detection (LPD), and antijam which means resistance to jamming (EPM or ECCM).
The [spacecraft] shall maintain the ability to establish communication with the spacecraft in the event of an anomaly to the primary receive path.{SV-AV-1,SV-IT-1}{CP-8,SA-8(18),SC-47} Receiver communication can be established after an anomaly with such capabilities as multiple receive apertures, redundant paths within receivers, redundant receivers, omni apertures, fallback default command modes, and lower bit rates for contingency commanding, as examples
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards: [NSA- certified or approved cryptography for protection of classified information, FIPS-validated cryptography for the provision of hashing].{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2,SV-AC-3}{IA-7,SC-13}
The [spacecraft] shall be able to locate the onboard origin of a cyber attack and alert ground operators within 3 minutes.{SV-DCO-1}{IR-4,IR-4(1),IR-4(12),IR-4(13),RA-10,SA-8(22),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(16),SI-4(24)} The origin of any attack onboard the vehicle should be identifiable to support mitigation. At the very least, attacks from critical element (safety-critical or higher-attack surface) components should be locatable quickly so that timely action can occur.
The [spacecraft] shall detect and deny unauthorized outgoing communications posing a threat to the spacecraft.{SV-DCO-1}{IR-4,IR-4(1),RA-5(4),RA-10,SC-7(9),SC-7(10),SI-4,SI-4(1),SI-4(4),SI-4(7),SI-4(11),SI-4(13),SI-4(24),SI-4(25)}
The [spacecraft] shall recover to a known cyber-safe state when an anomaly is detected.{IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-10(6),SI-13,SI-17}
The [spacecraft] shall detect and recover from detected memory errors or transitions to a known cyber-safe state.{IR-4,IR-4(1),SA-8(16),SA-8(24),SI-3,SI-4(7),SI-10(6),SI-13,SI-17}
The [spacecraft] shall select and execute safe countermeasures against cyber attacks prior to entering cyber-safe mode.{SV-DCO-1}{IR-4,RA-10,SA-8(21),SA-8(24),SI-4(7),SI-17} These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker exquisitely—with or without ground aiding. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system." These countermeasures are likely executed prior to entering into a cyber-safe mode.
The [spacecraft] shall provide cyber threat status to the ground segment for the Defensive Cyber Operations team, per the governing specification.{SV-DCO-1}{IR-5,PM-16,PM-16(1),RA-3(3),RA-10,SI-4,SI-4(1),SI-4(24),SI-7(7)} The future space enterprises will include full-time Cyber Defense teams supporting space mission systems. Their work is currently focused on the ground segment but may eventually require specific data from the space segment for their successful operation. This requirement is a placeholder to ensure that any DCO-related requirements are taken into consideration for this document.
The [spacecraft] shall be capable of shutting off specific subsystems or payloads to isolate malicious activity or protect the platform.{PE-10}
The [spacecraft] shall perform an orderly, controlled system shut-down to a known cyber-safe state upon receipt of a termination command or condition.{PE-11,PE-11(1),SA-8(16),SA-8(19),SA-8(24),SI-17}
The [spacecraft] shall operate securely in off-nominal power conditions, including loss of power and spurious power transients.{PE-11,PE-11(1),SA-8(16),SA-8(19),SI-13,SI-17}
The [spacecraft] shall protect system components, associated data communications, and communication buses in accordance with: (i) national emissions and TEMPEST policies and procedures, and (ii) the security category or sensitivity of the transmitted information.{SV-CF-2,SV-MA-2}{PE-14,PE-19,PE-19(1),RA-5(4),SA-8(18),SA-8(19),SC-8(1)} The measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements. The concerns addressed by this control during operation are emanations leakage between multiple payloads within a single space platform, and between payloads and the bus.
The [organization] shall describe (a) the separation between RED and BLACK cables, (b) the filtering on RED power lines, (c) the grounding criteria for the RED safety grounds, (d) and the approach for dielectric separators on any potential fortuitous conductors.{SV-CF-2,SV-MA-2}{PE-19,PE-19(1)}
The [spacecraft] shall be designed such that it protects itself from information leakage due to electromagnetic signals emanations.{SV-CF-2,SV-MA-2}{PE-19,PE-19(1),RA-5(4),SA-8(19)} This requirement applies if system components are being designed to address EMSEC and the measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements.
The [spacecraft] shall be constructed with sufficient electromagnetic shielding to protect electronic components from damage to the degree deemed acceptable by the Program.{PE-9,PE-14,PE-18,PE-21}
The [organization] shall implement a security architecture and design that provides the required security functionality, allocates security controls among physical and logical components, and integrates individual security functions, mechanisms, and processes together to provide required security capabilities and a unified approach to protection.{SV-MA-6}{PL-7,SA-2,SA-8,SA-8(1),SA-8(2),SA-8(3),SA-8(4),SA-8(5),SA-8(6),SA-8(7),SA-8(9),SA-8(11),SA-8(13),SA-8(19),SA-8(29),SA-8(30),SC-32,SC-32(1)}
The [spacecraft] shall be designed and configured so that encrypted communications traffic and data is visible to on-board security monitoring tools.{SV-DCO-1}{RA-10,SA-8(21),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(10),SI-4(13),SI-4(24),SI-4(25)}
The [spacecraft] shall be designed and configured so that spacecraft memory can be monitored by the on-board intrusion detection/prevention capability.{SV-DCO-1}{RA-10,SA-8(21),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(24),SI-16}
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)} The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management.
The [spacecraft] shall generate error messages that provide information necessary for corrective actions without revealing information that could be exploited by adversaries.{SV-AV-5,SV-AV-6,SV-AV-7}{RA-5(4),SI-4(12),SI-11}
The [spacecraft] shall reveal error messages only to operations personnel monitoring the telemetry.{SV-AV-5,SV-AV-6,SV-AV-7}{RA-5(4),SI-4(12),SI-11}
The [spacecraft] shall retain the capability to update/upgrade operating systems while on-orbit.{SV-SP-7}{SA-4(5),SA-8(8),SA-8(31),SA-10(2),SI-3} The operating system updates should be performed using multi-factor authorization and should only be performed when risk of compromise/exploitation of identified vulnerability outweighs the risk of not performing the update.
The [spacecraft] shall initialize the platform to a known safe state.{SA-8(19),SA-8(23),SA-8(24),SI-17}
The [spacecraft] shall implement cryptographic mechanisms that achieve adequate protection against the effects of intentional electromagnetic interference.{SV-AV-1,SV-IT-1}{SA-8(19),SC-8(1),SC-40,SC-40(1)}
The [spacecraft] shall provide the capability to verify the correct operation of security-relevant software and hardware mechanisms (e.g.spacecraft IDS/IPS, logging, crypto, etc..) {SV-DCO-1}{SA-8(21),SI-3,SI-6}
The [spacecraft] shall be capable of removing flight software after updated versions have been installed.{SV-SP-1,SV-SP-9}{SA-8(8),SI-2(6)}
The [spacecraft] shall discriminate between valid and invalid input into the software and rejects invalid input.{SC-16(2),SI-3(8),SI-10,SI-10(3),SI-10(6)}
The [spacecraft] shall identify and reject commands received out-of-sequence when the out-of-sequence commands can cause a hazard/failure or degrade the control of a hazard or mission.{SC-16(2),SI-4(13),SI-4(25),SI-10,SI-10(6),SI-13}
The [spacecraft] software subsystems shall provide independent mission/cyber critical threads such that any one credible event will not corrupt another mission/cyber critical thread.{SV-MA-3,SV-AV-7}{SC-3}
The [spacecraft] shall provide independent mission/cyber critical threads such that any one credible event will not corrupt another mission/cyber critical thread.{SC-3,SC-32,SC-32(1),SI-3,SI-13}
The [organization] shall ensure synchronization of system clocks within and between systems and system components..{SV-AV-3}{SC-45,SC-45(1),SC-45(2)}
The [spacecraft] shall internally monitor GPS performance so that changes or interruptions in the navigation or timing are flagged.{SV-IT-1}{SC-45(1)}
The [spacecraft] shall implement protections against external and internal communications from jamming attempts.{SC-5,SC-40,SC-40(1)}
The [spacecraft] shall protect external and internal communications from jamming and spoofing attempts.{SV-AV-1,SV-IT-1}{SC-5,SC-40,SC-40(1)} Can be aided via the Crosslink, S-Band, and L-Band subsystems
The [organization] shall define the security safeguards to be employed to protect the availability of system resources.{SV-AC-6}{SC-6,SI-17}
The [spacecraft] software subsystems shall accept [Program defined hazardous] commands only when prerequisite checks are satisfied.{SV-MA-3,SV-AV-7}{SI-10}
The [spacecraft] software subsystems shall identify and reject commands received out-of-sequence when the out-of-sequence commands can cause a hazard/failure or degrade the control of a hazard or mission.{SV-MA-3,SV-AV-7}{SI-10}
The [spacecraft] software subsystems shall perform prerequisite checks for the execution of hazardous commands.{SV-MA-3,SV-AV-7}{SI-10}
The [organization] shall ensure that all viable commands are known to the mission and SV "owner.{SV-AC-8}{SI-10,SI-10(3)} This is a concern for bus re-use. It is possible that the manufacturer left previously coded commands in their syntax rather than starting from a clean slate. This leaves potential backdoors and other functionality the mission does not know about.
The [organization] shall perform analysis of critical (backdoor) commands that could adversely affect mission success if used maliciously.{SV-AC-8}{SI-10,SI-10(3)} Heritage and commercial products often have many residual operational (e.g., hardware commands) and test capabilities that are unidentified or unknown to the end user, perhaps because they were not expressly stated mission requirements. These would never be tested and their effects unknown, and hence, could be used maliciously. Test commands not needed for flight should be deleted from the flight database.
The [spacecraft] shall only use or include [organization]-defined critical commands for the purpose of providing emergency access where commanding authority is appropriately restricted.{SV-AC-8}{SI-10,SI-10(3)} The intent is protect against misuse of critical commands. On potential scenario is where you could use accounts with different privileges, could require an additional passphrase or require entry into a different state or append an additional footer to a critical command. There is room for design flexibility here that can still satisfy this requirement.
The [spacecraft] software subsystems shall discriminate between valid and invalid input into the software and rejects invalid input.{SV-MA-3,SV-AV-7}{SI-10,SI-10(3)}
The [spacecraft] software subsystems shall properly handle spurious input and missing data.{SV-MA-3,SV-AV-7}{SI-10,SI-10(3)}
The [spacecraft] shall perform prerequisite checks for the execution of hazardous commands.{SI-10,SI-10(6),SI-13}
The [spacecraft] software subsystems shall validate a functionally independent parameter prior to the issuance of any sequence that could remove an inhibit or perform a hazardous action.{SV-MA-3,SV-AV-7}{SI-10(3)}
The [spacecraft] shall validate a functionally independent parameter prior to the issuance of any sequence that could remove an inhibit, or perform a hazardous action.{SI-10(3),SI-10(6),SI-13}
The [spacecraft] mission/cyber critical commands shall be "complex" and/or diverse from other commands so that a single bit flip could not transform a benign command into a hazardous command.{SV-MA-3,SV-AV-7}{SI-10(5)}
The [spacecraft] software subsystems shall provide at least one independent command for each operator-initiated action used to shut down a function leading to or reducing the control of a hazard.{SV-MA-3,SV-AV-7}{SI-10(5)}
The [spacecraft] shall have failure tolerance on sensors used by software to make mission-critical decisions.{SV-MA-3,SV-AV-7}{SI-13,SI-17}
The [spacecraft] cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.{SV-AV-5,SV-AV-6,SV-AV-7}{SI-17} Cyber-safe mode is using a fail-secure mentality where if there is a malfunction that the spacecraft goes into a fail-secure state where cyber protections like authentication and encryption are still employed (instead of bypassed) and the spacecraft can be restored by authorized commands. The cyber-safe mode should be stored in a high integrity location of the on-board SV so that it cannot be modified by attackers.
The [spacecraft] shall safely transition between all predefined, known states.{SI-17}
The [spacecraft] software subsystems shall detect and recover/transition from detected memory errors to a known cyber-safe state.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall initialize the spacecraft to a known safe state.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall operate securely in off-nominal power conditions, including loss of power and spurious power transients.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall perform an orderly, controlled system shutdown to a known cyber-safe state upon receipt of a termination command or condition.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall recover to a known cyber-safe state when an anomaly is detected.{SV-MA-3,SV-AV-7}{SI-17}
The [spacecraft] software subsystems shall safely transition between all predefined, known states.{SV-MA-3,SV-AV-7}{SI-17}
The [organization] shall ensure that FMEA/FMECA artifacts are strictly controlled so that particular fault responses are not disclosed via documentation.{SV-AV-5}