SV-AV-7 - TT&C Hardware Failure

The TT&C is the lead contributor to satellite failure over the first 10 years on-orbit, around 20% of the time. The failures due to gyro are around 12% between year one and 6 on-orbit and then ramp up starting around year six and overtake the contributions of the TT&C subsystem to satellite failure. Need to ensure equipment is not counterfeit and the supply chain is sound.

Informational References

  • CENTRA - Chinese Research into Cyber Vulnerabilities of Satellite Bus Standards
DiD Layer: Prevention
CAPEC #:  520 | 522 | 530
Lowest Threat Tier to
Create Threat Event:  
Notional Risk Rank Score: 17

High-Level Requirements

The Program shall apply risk mitigation strategies to reduce the threat of TT&C failing over time.

Low-Level Requirements

Requirement Rationale/Additional Guidance/Notes
The Program shall protect against supply chain threats to the system, system components, or system services by employing [institutional-defined security safeguards] {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-1} During SCRM, criticality analysis will aid in determining supply chain risk. For mission critical functions/components, extra scrutiny must be applied to ensure supply chain is secured.
The Program shall conduct a criticality analysis to identify mission critical functions and critical components and reduce the vulnerability of such functions and components through secure system design. {SV-SP-3,SV-SP-4,SV-AV-7,SV-MA-4} {SR-1,RA-9,SA-15(3),CP-2(8)} This could include tailored acquisition strategies, contract tools, and procurement methods.
The Program shall employ the [Program-defined] approaches for the purchase of the system, system components, or system services from suppliers. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-5} Examples include: (1) Transferring a portion of the risk to the developer or supplier through the use of contract language and incentives; (2) Using contract language that requires the implementation of SCRM throughout the system lifecycle in applicable contracts and other acquisition and assistance instruments (grants, cooperative agreements, Cooperative Research and Development Agreements (CRADAs), and other transactions). Within the DOD some examples include: (a) Language outlined in the Defense Acquisition Guidebook section 13.13. Contracting; (b) Language requiring the use of protected mechanisms to deliver elements and data about elements, processes, and delivery mechanisms; (c) Language that articulates that requirements flow down supply chain tiers to sub-prime suppliers. (3) Incentives for suppliers that: (a) Implement required security safeguards and SCRM best practices; (b) Promote transparency into their organizational processes and security practices; (c) Provide additional vetting of the processes and security practices of subordinate suppliers, critical information system components, and services; and (d) Implement contract to reduce SC risk down the contract stack. (4) Gaining insight into supplier security practices; (5) Using contract language and incentives to enable more robust risk management later in the lifecycle; (6) Using a centralized intermediary or “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary;
The Program shall maintain documentation tracing the strategies, tools, and methods implemented to the Program-defined strategies, tools, and methods as a means to mitigate supply chain risk . {SV-SP-3,SV-SP-4,SV-AV-7} {SR-5}
The Program shall employ [Selection (one or more): independent third-party analysis, Program penetration testing, independent third-party penetration testing] of [Program-defined supply chain elements, processes, and actors] associated with the system, system components, or system services. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-6(1)} Penetration testing should be performed throughout the lifecycle on physical and logical systems, elements, and processes including: (1) Hardware, software, and firmware development processes; (2) Shipping/handling procedures; (3) Personnel and physical security programs; (4) Configuration management tools/measures to maintain provenance; and (5) Any other programs, processes, or procedures associated with the production/distribution of supply chain elements. 
The Program shall perform penetration testing/analysis: (1) On potential system elements before accepting the system; (2) As a realistic simulation of the active adversary’s known adversary tactics, techniques, procedures (TTPs), and tools; and (3) Throughout the lifecycle on physical and logical systems, elements, and processes. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SA-11(5)} Examples of security safeguards that the organization should consider implementing to limit the harm from potential adversaries targeting the organizational supply chain, are: (1) Using trusted physical delivery mechanisms that do not permit access to the element during delivery (ship via a protected carrier, use cleared/official couriers, or a diplomatic pouch); (2) Using trusted electronic delivery of products and services (require downloading from approved, verification-enhanced sites); (3) Avoiding the purchase of custom configurations, where feasible; (4) Using procurement carve outs (i.e., exclusions to commitments or obligations), where feasible; (5) Using defensive design approaches; (6) Employing system OPSEC principles; (7) Employing a diverse set of suppliers; (8) Employing approved vendor lists with standing reputations in industry; (9) Using a centralized intermediary and “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary Employing inventory management policies and processes; (10) Using flexible agreements during each acquisition and procurement phase so that it is possible to meet emerging needs or requirements to address supply chain risk without requiring complete revision or re-competition of an acquisition or procurement; (11) Using international, national, commercial or government standards to increase potential supply base; (12) Limiting the disclosure of information that can become publicly available; and (13) Minimizing the time between purchase decisions and required delivery. 
The Program shall employ [Program-defined] techniques to limit harm from potential adversaries identifying and targeting the Program supply chain. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-3(2),SC-38} * The Program should also consider sub suppliers and potential sub suppliers. * All-source intelligence of suppliers that the organization may use includes: (1) Defense Intelligence Agency (DIA) Threat Assessment Center (TAC), the enterprise focal point for supplier threat assessments for the DOD acquisition community risks; (2) Other U.S. Government resources including: (a) Government Industry Data Exchange Program (GIDEP) – Database where government and industry can record issues with suppliers, including counterfeits; and (b) System for Award Management (SAM) – Database of companies that are barred from doing business with the US Government. 
The Program shall use all-source intelligence analysis of suppliers and potential suppliers of the information system, system components, or system services to inform engineering, acquisition, and risk management decisions. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {RA-3(2)}
The Program (and Prime Contractor) shall conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-6} OPSEC safeguards may include: (1) Limiting the disclosure of information needed to design, develop, test, produce, deliver, and support the element for example, supplier identities, supplier processes, potential suppliers, security requirements, design specifications, testing and evaluation result, and system/component configurations, including the use of direct shipping, blind buys, etc.; (2) Extending supply chain awareness, education, and training for suppliers, intermediate users, and end users; (3) Extending the range of OPSEC tactics, techniques, and procedures to potential suppliers, contracted suppliers, or sub-prime contractor tier of suppliers; and (4) Using centralized support and maintenance services to minimize direct interactions between end users and original suppliers.
The Program shall employ [Program-defined Operations Security (OPSEC) safeguards] to protect supply chain-related information for the system, system components, or system services. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-7,SC-38,CP-2(8)}
The Program shall develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including support tamper resistance and provide a level of protection against the introduction of malicious code or hardware. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-11}
The [software subsystem] shall initialize the spacecraft to a known safe state. {SV-MA-3,SV-AV-7} {SI-17}
The [software subsystem] shall perform an orderly, controlled system shutdown to a known cyber-safe state upon receipt of a termination command or condition. {SV-MA-3,SV-AV-7} {SI-17}
The [software subsystem] shall operate securely in off-nominal power conditions, including loss of power and spurious power transients. {SV-MA-3,SV-AV-7} {SI-17}
The [software subsystem] shall identify and reject commands received out-of-sequence when the out-of-sequence commands can cause a hazard/failure or degrade the control of a hazard or mission. {SV-MA-3,SV-AV-7} {SI-10}
The [software subsystem] shall detect and recover/transition from detected memory errors to a known cyber-safe state. {SV-MA-3,SV-AV-7} {SI-17}
The [software subsystem] shall recover to a known cyber-safe state when an anomaly is detected. {SV-MA-3,SV-AV-7} {SI-17}
The [software subsystem] shall accept [Program defined hazardous] commands only when prerequisite checks are satisfied. {SV-MA-3,SV-AV-7} {SI-10} The intent of this requirement is to prevent state corruption. Developers should test nominal and off-nominal conditions. It is typically true that some state transitions are not legal by the state transition diagram and are not supported by the design. Legal and illegal state transitions must be tested. Typically the payload(s) are also considered part of this state transition requirement.
The [software subsystem] shall safely transition between all predefined, known states. {SV-MA-3,SV-AV-7} {SI-17}
The [software subsystem] shall discriminate between valid and invalid input into the software and rejects invalid input. {SV-MA-3,SV-AV-7} {SI-10,SI-10(3)}
The [software subsystem] shall properly handle spurious input and missing data. {SV-MA-3,SV-AV-7} {SI-10,SI-10(3)}
The spacecraft shall have failure tolerance on sensors used by software to make mission-critical decisions. {SV-MA-3,SV-AV-7} {SI-17} This requirement was derived from software safety/redundancy standards. The intent is to protect from letting a single command disable the spacecraft or generate a hazard. State transitions, confirmation commands, and other mechanisms could be used to satisfy this control.
The [software subsystem] shall provide two independent and unique command messages to deactivate a fault tolerant capability for a critical or catastrophic hazard. {SV-MA-3,SV-AV-7} {AC-3(2)}
The [software subsystem] shall provide at least one independent command for each operator-initiated action used to shut down a function leading to or reducing the control of a hazard. {SV-MA-3,SV-AV-7} {SI-10(5)} This requirement was derived from software safety/redundancy standards. The intent is to protect from letting a software perform mission critical functions without adequate protection so that if the software fails or is compromised that there are cross checks in place to protection the mission. There should be some secondary control/validation happening when SW is in total control. While autonomy is important and needed, for mission critical functions like thruster burn, SW updates, etc.
The [software subsystem] shall provide non-identical methods, or functionally independent methods, for commanding a mission critical function when the software is the sole control of that function. {SV-MA-3,SV-AV-7} {AC-3(2)} Methods to separate the mission/cyber critical software from software that is not critical, such as partitioning, may be used. If such software methods are used to separate the code and are verified, then the software used in the isolation method is mission/cyber critical, and the rest of the software is not mission/cyber critical. This was derived from software safety/redundancy standards. The intent is to protect from letting a single thread corruption bleed over to corruption of another thread.
The [software subsystem] shall provide independent mission/cyber critical threads such that any one credible event will not corrupt another mission/cyber critical thread. {SV-MA-3,SV-AV-7} {SC-3}
The spacecraft’s mission/cyber critical commands shall require to be "complex" and/or diverse from other commands so that a single bit flip could not transform a benign command into a hazardous command. {SV-MA-3,SV-AV-7} {SI-10(5)} The intent is to prevent against a single command having a catastrophic system result. E.g., command confirmation could satisfy this control. When designing safety critical systems, single "kill pill" / critical commands must be avoided.
The [software subsystem] shall perform prerequisite checks for the execution of hazardous commands. {SV-MA-3,SV-AV-7} {SI-10}
The [software subsystem] shall validate a functionally independent parameter prior to the issuance of any sequence that could remove an inhibit or perform a hazardous action. {SV-MA-3,SV-AV-7} {SI-10(3)}
The spacecraft shall provide or support the capability for recovery and reconstitution to a known state after a disruption, compromise, or failure. {SV-AV-5,SV-AV-6,SV-AV-7} {CP-10,CP-10(4),IR-4} Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and SW functions to preattack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on available equipment still available after a cyberattack. The goal is for the vehicle to resume full mission operations. If not possible, a reduced level of mission capability should be achieved.
The spacecraft shall provide the capability to enter the spacecraft into a configuration-controlled and integrity-protected state representing a known, operational cyber-safe state (e.g., cyber-safe mode). {SV-AV-5,SV-AV-6,SV-AV-7} {CP-12,SI-17,IR-4(3)}
The spacecraft shall enter a cyber-safe mode when conditions that threaten the spacecraft are detected with restrictions as defined based on the cyber-safe mode. {SV-AV-5,SV-AV-6,SV-AV-7} {CP-12,SI-17,IR-4(3)} Cyber-safe mode is using a fail-secure mentality where if there is a malfunction that the spacecraft goes into a fail-secure state where cyber protections like authentication and encryption are still employed (instead of bypassed) and the spacecraft can be restored by authorized commands. The cyber-safe mode should be stored in a high integrity location of the on-board SV so that it cannot be modified by attackers.
The spacecraft's cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable. {SV-AV-5,SV-AV-6,SV-AV-7} {SI-17}
The spacecraft shall fail to a known secure state for all types of failures preserving information necessary to determine cause of failure and to return to operations with least disruption to mission operations. {SV-AV-5,SV-AV-6,SV-AV-7} {SC-24,SI-17}
The spacecraft shall generate error messages that provide information necessary for corrective actions without revealing information that could be exploited by adversaries. {SV-AV-5,SV-AV-6,SV-AV-7} {SI-11}
The spacecraft shall reveal error messages only to operations personnel monitoring the telemetry. {SV-AV-5,SV-AV-6,SV-AV-7} {SI-11}
Nothing specific to eliminate the availability threat of TT&C failing over time. Requirements are covered under threat ID SV-SP-3, SV-SP-4,SV-MA-3 and SV-AV-Strong fault management and redundancy also helps mitigate threats against TT&C. {SV-AV-7}

Related SPARTA Techniques and Sub-Techniques

ID Name Description
EX-0018 Non-Kinetic Physical Attack A non-kinetic physical attack is when a satellite is physically damaged without any direct contact. Non-kinetic physical attacks can be characterized into a few types: electromagnetic pulses, high-powered lasers, and high-powered microwaves. These attacks have medium possible attribution levels and often provide little evidence of success to the attacker.* *
EX-0018.01 Electromagnetic Pulse (EMP) An EMP, such as those caused by high-altitude detonation of certain bombs, is an indiscriminate form of attack in space. For example, a nuclear detonation in space releases an electromagnetic pulse (EMP) that would have near immediate consequences for the satellites within range. The detonation also creates a high radiation environment that accelerates the degradation of satellite components in the affected orbits.* *
EX-0018.02 High-Powered Laser A high-powered laser can be used to permanently or temporarily damage critical satellite components (i.e. solar arrays or optical centers). If directed toward a satellite’s optical center, the attack is known as blinding or dazzling. Blinding, as the name suggests, causes permanent damage to the optics of a satellite. Dazzling causes temporary loss of sight for the satellite. While there is clear attribution of the location of the laser at the time of the attack, the lasers used in these attacks may be mobile, which can make attribution to a specific actor more difficult because the attacker does not have to be in their own nation, or even continent, to conduct such an attack. Only the satellite operator will know if the attack is successful, meaning the attacker has limited confirmation of success, as an attacked nation may not choose to announce that their satellite has been attacked or left vulnerable for strategic reasons. A high-powered laser attack can also leave the targeted satellite disabled and uncontrollable, which could lead to collateral damage if the satellite begins to drift. A higher-powered laser may permanently damage a satellite by overheating its parts. The parts most susceptible to this are satellite structures, thermal control panels, and solar panels.* *
EX-0018.03 High-Powered Microwave High-powered microwave (HPM) weapons can be used to disrupt or destroy a satellite’s electronics. A “front-door” HPM attack uses a satellite’s own antennas as an entry path, while a “back-door” attack attempts to enter through small seams or gaps around electrical connections and shielding. A front-door attack is more straightforward to carry out, provided the HPM is positioned within the field of view of the antenna that it is using as a pathway, but it can be thwarted if the satellite uses circuits designed to detect and block surges of energy entering through the antenna. In contrast, a back-door attack is more challenging, because it must exploit design or manufacturing flaws, but it can be conducted from many angles relative to the satellite. Both types of attacks can be either reversible or irreversible; however, the attacker may not be able to control the severity of the damage from the attack. Both front-door and back-door HPM attacks can be difficult to attribute to an attacker, and like a laser weapon, the attacker may not know if the attack has been successful. A HPM attack may leave the target satellite disabled and uncontrollable which can cause it to drift into other satellites, creating further collateral damage.* *

Related SPARTA Countermeasures

ID Name Description D3FEND ISO 27001
CM0009 Threat Intelligence Program A threat intelligence program helps an organization generate their own threat intelligence information and track trends to inform defensive priorities and mitigate risk. Leverage all-source intelligence services or commercial satellite imagery to identify and track adversary infrastructure development/acquisition. Countermeasures for this attack fall outside the scope of the mission in the majority of cases. D3-PH D3-AH D3-NM D3-NVA D3-SYSM D3-SYSVA A.5.7 A.5.7 6.1.2 8.2 9.3.2 A.8.8 A.5.7 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28
CM0024 Anti-counterfeit Hardware Develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including tamper resistance and protection against the introduction of malicious code or hardware.  D3-AI D3-SWI D3-HCI D3-FEMC D3-DLIC D3-FV A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29
CM0025 Supplier Review Conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services. D3-OAM D3-ODM A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 A.8.25 A.8.27 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29 A.5.22
CM0026 Original Component Manufacturer Components/Software that cannot be procured from the original component manufacturer or their authorized franchised distribution network should be approved by the supply chain board or equivalent to prevent and detect counterfeit and fraudulent parts, materials, and software. D3-OAM D3-ODM D3-AM D3-FV D3-SFV A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29
CM0027 ASIC/FPGA Manufacturing Application-Specific Integrated Circuit (ASIC) / Field Programmable Gate Arrays should be developed by accredited trusted foundries to limit potential hardware-based trojan injections. D3-OAM D3-ODM D3-AM D3-FV D3-SFV A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 A.8.7 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.20 A.5.21 A.5.23 A.8.29
CM0074 Distributed Constellations A distributed system uses a number of nodes, working together, to perform the same mission or functions as a single node. In a distributed constellation, the end user is not dependent on any single satellite but rather uses multiple satellites to derive a capability. A distributed constellation can complicate an adversary’s counterspace planning by presenting a larger number of targets that must be successfully attacked to achieve the same effects as targeting just one or two satellites in a less-distributed architecture. GPS is an example of a distributed constellation because the functioning of the system is not dependent on any single satellite or ground station; a user can use any four satellites within view to get a time and position fix.* * D3-AI D3-NNI D3-SYSM D3-DEM D3-SVCDM D3-SYSVA 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.29 A.5.29
CM0075 Proliferated Constellations Proliferated satellite constellations deploy a larger number of the same types of satellites to similar orbits to perform the same missions. While distribution relies on placing more satellites or payloads on orbit that work together to provide a complete capability, proliferation is simply building more systems (or maintaining more on-orbit spares) to increase the constellation size and overall capacity. Proliferation can be an expensive option if the systems being proliferated are individually expensive, although highly proliferated systems may reduce unit costs in production from the learning curve effect and economies of scale.* * D3-AI D3-NNI D3-SYSM D3-DEM D3-SVCDM D3-SYSVA 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.29 A.5.29
CM0076 Diversified Architectures In a diversified architecture, multiple systems contribute to the same mission using platforms and payloads that may be operating in different orbits or in different domains. For example, wideband communications to fixed and mobile users can be provided by the military’s WGS system, commercial SATCOM systems, airborne communication nodes, or terrestrial networks. The Chinese BeiDou system for positioning, navigation, and timing uses a diverse set of orbits, with satellites in geostationary orbit (GEO), highly inclined GEO, and medium Earth orbit (MEO). Diversification reduces the incentive for an adversary to attack any one of these systems because the impact on the overall mission will be muted since systems in other orbits or domains can be used to compensate for losses. Moreover, attacking space systems in diversified orbits may require different capabilities for each orbital regime, and the collateral damage from such attacks, such as orbital debris, could have a much broader impact politically and economically.* * D3-AI D3-NNI D3-SYSM D3-DEM D3-SVCDM D3-SYSVA 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.8.6 A.5.29 A.5.29
CM0077 Space Domain Awareness The credibility and effectiveness of many other types of defenses are enabled or enhanced by the ability to quickly detect, characterize, and attribute attacks against space systems. Space domain awareness (SDA) includes identifying and tracking space objects, predicting where objects will be in the future, monitoring the space environment and space weather, and characterizing the capabilities of space objects and how they are being used. Exquisite SDA—information that is more timely, precise, and comprehensive than what is publicly available—can help distinguish between accidental and intentional actions in space. SDA systems include terrestrial-based optical, infrared, and radar systems as well as space-based sensors, such as the U.S. military’s Geosynchronous Space Situational Awareness Program (GSSAP) inspector satellites. Many nations have SDA systems with various levels of capability, and an increasing number of private companies (and amateur space trackers) are developing their own space surveillance systems, making the space environment more transparent to all users.* * D3-APLM D3-PM D3-HCI D3-SYSM A.5.29 A.7.4 A.8.16 A.5.10
CM0078 Space-Based Radio Frequency Mapping Space-based RF mapping is the ability to monitor and analyze the RF environment that affects space systems both in space and on Earth. Similar to exquisite SDA, space-based RF mapping provides space operators with a more complete picture of the space environment, the ability to quickly distinguish between intentional and unintentional interference, and the ability to detect and geolocate electronic attacks. RF mapping can allow operators to better characterize jamming and spoofing attacks from Earth or from other satellites so that other defenses can be more effectively employed.* * D3-APLM D3-DEM D3-SVCDM D3-SYSM A.5.10
CM0079 Maneuverability Satellite maneuver is an operational tactic that can be used by satellites fitted with chemical thrusters to avoid kinetic and some directed energy ASAT weapons. For unguided projectiles, a satellite can be commanded to move out of their trajectory to avoid impact. If the threat is a guided projectile, like most direct-ascent ASAT and co-orbital ASAT weapons, maneuver becomes more difficult and is only likely to be effective if the satellite can move beyond the view of the onboard sensors on the guided warhead.* * None 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.29 A.5.10
CM0080 Stealth Technology Space systems can be operated and designed in ways that make them difficult to detect and track. Similar to platforms in other domains, stealthy satellites can use a smaller size, radar-absorbing coatings, radar-deflecting shapes, radar jamming and spoofing, unexpected or optimized maneuvers, and careful control of reflected radar, optical, and infrared energy to make themselves more difficult to detect and track. For example, academic research has shown that routine spacecraft maneuvers can be optimized to avoid detection by known sensors.* * D3-PH A.5.29
CM0081 Defensive Jamming and Spoofing A jammer or spoofer can be used to disrupt sensors on an incoming kinetic ASAT weapon so that it cannot steer itself effectively in the terminal phase of flight. When used in conjunction with maneuver, this could allow a satellite to effectively “dodge” a kinetic attack. Similar systems could also be used to deceive SDA sensors by altering the reflected radar signal to change the location, velocity, and number of satellites detected, much like digital radio frequency memory (DRFM) jammers used on many military aircraft today. A spacebased jammer can also be used to disrupt an adversary’s ability to communicate.* * with an ASAT weapon. D3-DO 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.29 A.5.10
CM0082 Deception and Decoys Deception can be used to conceal or mislead others on the “location, capability, operational status, mission type, and/or robustness” of a satellite. Public messaging, such as launch announcements, can limit information or actively spread disinformation about the capabilities of a satellite, and satellites can be operated in ways that conceal some of their capabilities. Another form of deception could be changing the capabilities or payloads on satellites while in orbit. Satellites with swappable payload modules could have on-orbit servicing vehicles that periodically move payloads from one satellite to another, further complicating the targeting calculus for an adversary because they may not be sure which type of payload is currently on which satellite. Satellites can also use tactical decoys to confuse the sensors on ASAT weapons and SDA systems. A satellite decoy can consist of an inflatable device designed to mimic the size and radar signature of a satellite, and multiple decoys can be stored on the satellite for deployment when needed. Electromagnetic decoys can also be used in space that mimic the RF signature of a satellite, similar to aircraft that use airborne decoys, such as the ADM-160 Miniature Air-launched Decoy (MALD).* * D3-DE D3-CHN D3-SHN D3-IHN D3-DO D3-DF D3-DNR D3-DP D3-DPR D3-DST D3-DUC None
CM0085 Electromagnetic Shielding Satellite components can be vulnerable to the effects of background radiation in the space environment and deliberate attacks from HPM and electromagnetic pulse weapons. The effects can include data corruption on memory chips, processor resets, and short circuits that permanently damage components.* * D3-PH D3-RFS A.5.29 A.5.10 A.7.5 A.7.8 A.7.5 A.7.8 A.8.12
CM0086 Filtering and Shuttering Filters and shutters can be used on remote sensing satellites to protect sensors from laser dazzling and blinding. Filters can protect sensors by only allowing light of certain wavelengths to reach the sensors. Filters are not very effective against lasers operating at the same wavelengths of light the sensors are designed to detect because a filter that blocks these wavelengths would also block the sensor from its intended mission. A shutter acts by quickly blocking or diverting all light to a sensor once an anomaly is detected or a threshold is reached, which can limit damage but also temporarily interrupts the collection of data.* * D3-PH A.5.29 A.5.10 A.7.5 A.7.8