The Program shall prevent unauthorized access to the spacecraft from the ground segment.
Low-Level Requirements
Requirement
Rationale/Additional Guidance/Notes
The [organization] should have requirements/controls for all ground/terrestrial systems covering: Data Protection, Ground Software, Endpoints, Networks, Computer Network Defense / Incident Response, Perimeter Security, Physical Controls, and Prevention Program (SSP, PPP, and Training).See NIST 800-53 and CNSSI 1253 for guidance on ground security {SV-MA-7}
Threat actors may compromise third-party infrastructure that can be used for future campaigns or to perpetuate other techniques. Infrastructure solutions include physical devices such as antenna, amplifiers, and convertors, as well as software used by satellite communicators. Instead of buying or renting infrastructure, a threat actor may compromise infrastructure and use it during other phases of the campaign's lifecycle.
Threat actors may compromise mission owned/operated ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
Threat actors may compromise access to third-party ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems can be or may have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation.
Threat actors may compromise alternative communication pathways which may not be as protected as the primary pathway. Depending on implementation the contingency communication pathways/solutions may lack the same level of security (i.e., physical security, encryption, authentication, etc.) which if forced to use could provide a threat actor an opportunity to launch attacks. Typically these would have to be coupled with other denial of service techniques on the primary pathway to force usage of secondary pathways.
Threat actors may establish a foothold within the backup ground/mission operations center (MOC) and then perform attacks to force primary communication traffic through the backup communication channel so that other TTPs can be executed (man-in-the-middle, malicious commanding, malicious code, etc.). While an attacker would not be required to force the communications through the backup channel vice waiting until the backup is used for various reasons. Threat actors can also utilize compromised ground stations to chain command execution and payload delivery across geo-separated ground stations to extend reach and maintain access on spacecraft. The backup ground/MOC should be considered a viable attack vector and the appropriate/equivalent security controls from the primary communication channel should be on the backup ground/MOC as well.
Threat actors may initially compromise the ground system in order to access the target spacecraft. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes. Threat actors may also perform further reconnaissance within the system to enumerate mission networks and gather information related to ground station logical topology, missions ran out of said ground station, birds that are in-band of targeted ground stations, and other mission system capabilities.
Threat actors may manipulate and modify on-orbit updates before they are sent to the target spacecraft. This attack can be done in a number of ways, including manipulation of source code, manipulating environment variables, on-board table/memory values, or replacing compiled versions with a malicious one.
Threat actors may compromise target owned ground systems components (e.g., front end processors, command and control software, etc.) that can be used for future campaigns or to perpetuate other techniques. These ground systems components have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
Access through trusted third-party relationship exploits an existing connection that has been approved for interconnection. Leveraging third party / approved interconnections to pivot into the target systems is a common technique for threat actors as these interconnections typically lack stringent access control due to the trusted status.
Threat actors may seek to exploit mission partners to gain an initial foothold for pivoting into the mission environment and eventually impacting the spacecraft. The complex nature of many space systems rely on contributions across organizations, including academic partners and even international collaborators. These organizations will undoubtedly vary in their system security posture and attack surface.
Threat actors may target the trust between vendors and the target spacecraft. Missions often grant elevated access to vendors in order to allow them to manage internal systems as well as cloud-based environments. The vendor's access may be intended to be limited to the infrastructure being maintained but it may provide laterally movement into the target spacecraft. Attackers may leverage security weaknesses in the vendor environment to gain access to more critical mission resources or network locations. In the spacecraft context vendors may have direct commanding and updating capabilities outside of the primary communication channel.
Threat actors can target the user segment in an effort to laterally move into other areas of the end-to-end mission architecture. When user segments are interconnected, threat actors can exploit lack of segmentation as the user segment's security undoubtedly varies in their system security posture and attack surface than the primary space mission. The user equipment and users themselves provide ample attack surface as the human element and their vulnerabilities (i.e., social engineering, phishing, iOT) are often the weakest security link and entry point into many systems.
Threat actors may perform specific techniques in order to bypass or disable the encryption mechanism onboard the victim spacecraft. By bypassing or disabling this particular mechanism, further tactics can be performed, such as Exfiltration, that may have not been possible with the internal encryption process in place.
Threat actors may compromise target owned ground systems that can be used for persistent access to the spacecraft or to perpetuate other techniques. These ground systems have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute persistently.
DE-0002
Prevent Downlink
Threat actors may target the downlink connections to prevent the victim spacecraft from sending telemetry to the ground controllers. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
Threat actors may utilize ground-system presence to inhibit the ground system software's ability to process (or display) telemetry, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
Threat actors may compromise target owned ground systems that can be used for future campaigns or to perpetuate other techniques. These ground systems have already been configured for communications to the victim spacecraft. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
Threat actors may compromise access to partner sites that can be used for future campaigns or to perpetuate other techniques. These sites are typically configured for communications to the primary ground station(s) or in some cases the spacecraft itself. Unlike mission operated ground systems, partner sites may provide an easier target for threat actors depending on the company, roles and responsibilities, and interests of the third-party. By compromising this infrastructure, threat actors can stage, launch, and execute an operation. Threat actors may utilize these systems for various tasks, including Execution and Exfiltration.
Measures designed to mislead an adversary by manipulation, distortion, or falsification of evidence or information into a system to induce the adversary to react in a manner prejudicial to their interests. Threat actors may seek to deceive mission stakeholders (or even military decision makers) for a multitude of reasons. Telemetry values could be modified, attacks could be designed to intentionally mimic another threat actor's TTPs, and even allied ground infrastructure could be compromised and used as the source of communications to the spacecraft.
Measures designed to temporarily impair the use or access to a system for a period of time. Threat actors may seek to disrupt communications from the victim spacecraft to the ground controllers or other interested parties. By disrupting communications during critical times, there is the potential impact of data being lost or critical actions not being performed. This could cause the spacecraft's purpose to be put into jeopardy depending on what communications were lost during the disruption. This behavior is different than Denial as this attack can also attempt to modify the data and messages as they are passed as a way to disrupt communications.
Measures designed to temporarily eliminate the use, access, or operation of a system for a period of time, usually without physical damage to the affected system. Threat actors may seek to deny ground controllers and other interested parties access to the victim spacecraft. This would be done exhausting system resource, degrading subsystems, or blocking communications entirely. This behavior is different from Disruption as this seeks to deny communications entirely, rather than stop them for a length of time.
Measures designed to permanently impair (either partially or totally) the use of a system. Threat actors may target various subsystems or the hosted payload in such a way to rapidly increase it's degradation. This could potentially shorten the lifespan of the victim spacecraft.
This technique is a result of utilizing TTPs to create an impact and the applicable countermeasures are associated with the TTPs leveraged to achieve the impact
Organizations should look to identify and properly classify mission sensitive design/operations information (e.g., fault management approach) and apply access control accordingly. Any location (ground system, contractor networks, etc.) storing design information needs to ensure design info is protected from exposure, exfiltration, etc. Space system sensitive information may be classified as Controlled Unclassified Information (CUI) or Company Proprietary. Space system sensitive information can typically include a wide range of candidate material: the functional and performance specifications, any ICDs (like radio frequency, ground-to-space, etc.), command and telemetry databases, scripts, simulation and rehearsal results/reports, descriptions of uplink protection including any disabling/bypass features, failure/anomaly resolution, and any other sensitive information related to architecture, software, and flight/ground /mission operations. This could all need protection at the appropriate level (e.g., unclassified, CUI, proprietary, classified, etc.) to mitigate levels of cyber intrusions that may be conducted against the project’s networks. Stand-alone systems and/or separate database encryption may be needed with controlled access and on-going Configuration Management to ensure changes in command procedures and critical database areas are tracked, controlled, and fully tested to avoid loss of science or the entire mission. Sensitive documentation should only be accessed by personnel with defined roles and a need to know. Well established access controls (roles, encryption at rest and transit, etc.) and data loss prevention (DLP) technology are key countermeasures. The DLP should be configured for the specific data types in question.
A threat intelligence program helps an organization generate their own threat intelligence information and track trends to inform defensive priorities and mitigate risk. Leverage all-source intelligence services or commercial satellite imagery to identify and track adversary infrastructure development/acquisition. Countermeasures for this attack fall outside the scope of the mission in the majority of cases.
Conduct a criticality analysis to identify mission critical functions, critical components, and data flows and reduce the vulnerability of such functions and components through secure system design. Focus supply chain protection on the most critical components/functions. Leverage other countermeasures like segmentation and least privilege to protect the critical components.
Develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including tamper resistance and protection against the introduction of malicious code or hardware.Â
Conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services.
Application-Specific Integrated Circuit (ASIC) / Field Programmable Gate Arrays should be developed by accredited trusted foundries to limit potential hardware-based trojan injections.
Perform physical inspection of hardware to look for potential tampering. Leverage tamper proof protection where possible when shipping/receiving equipment.
Train users to be aware of access or manipulation attempts by a threat actor to reduce the risk of successful spear phishing, social engineering, and other techniques that involve user interaction. Ensure that role-based security-related training is provided to personnel with assigned security roles and responsibilities: (i) before authorizing access to the information system or performing assigned duties; (ii) when required by information system changes; and (iii) at least annually if not otherwise defined.
Establish policy and procedures to prevent individuals (i.e., insiders) from masquerading as individuals with valid access to areas where commanding of the spacecraft is possible. Establish an Insider Threat Program to aid in the prevention of people with authorized access performing malicious activities.
Utilize a two-person system to achieve a high level of security for systems with command level access to the spacecraft. Under this rule all access and actions require the presence of two authorized people at all times.
A component of cybersecurity to deny unauthorized persons information derived from telecommunications and to ensure the authenticity of such telecommunications. COMSEC includes cryptographic security, transmission security, emissions security, and physical security of COMSEC material. It is imperative to utilize secure communication protocols with strong cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission. Systems should also maintain the confidentiality and integrity of information during preparation for transmission and during reception. Spacecraft should not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). The cryptographic mechanisms should identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters.
Leverage best practices for crypto key management as defined by organization like NIST or the National Security Agency. Leverage only approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria. Encryption key handling should be performed outside of the onboard software and protected using cryptography. Encryption keys should be restricted so that they cannot be read via any telecommands.
Authenticate all communication sessions (crosslink and ground stations) for all commands before establishing remote connections using bidirectional authentication that is cryptographically based. Adding authentication on the spacecraft bus and communications on-board the spacecraft is also recommended.
Utilizing techniques to assure traffic flow security and confidentiality to mitigate or defeat traffic analysis attacks or reduce the value of any indicators or adversary inferences. This may be a subset of COMSEC protections, but the techniques would be applied where required to links that carry TT&C and/or data transmissions (to include on-board the spacecraft) where applicable given value and attacker capability. Techniques may include but are not limited to methods to pad or otherwise obfuscate traffic volumes/duration and/or periodicity, concealment of routing information and/or endpoints, or methods to frustrate statistical analysis.
In addition to authentication on-board the spacecraft bus, encryption is also recommended to protect the confidentiality of the data traversing the bus.
In order to secure the development environment, the first step is understanding all the devices and people who interact with it. Maintain an accurate inventory of all people and assets that touch the development environment. Ensure strong multi-factor authentication is used across the development environment, especially for code repositories, as threat actors may attempt to sneak malicious code into software that's being built without being detected. Use zero-trust access controls to the code repositories where possible. For example, ensure the main branches in repositories are protected from injecting malicious code. A secure development environment requires change management, privilege management, auditing and in-depth monitoring across the environment.
Vulnerability scanning is used to identify known software vulnerabilities (excluding custom-developed software - ex: COTS and Open-Source). Utilize scanning tools to identify vulnerabilities in dependencies and outdated software (i.e., software composition analysis). Ensure that vulnerability scanning tools and techniques are employed that facilitate interoperability among tools and automate parts of the vulnerability management process by using standards for: (1) Enumerating platforms, custom software flaws, and improper configurations; (2) Formatting checklists and test procedures; and (3) Measuring vulnerability impact.
Generate Software Bill of Materials (SBOM) against the entire software supply chain and cross correlate with known vulnerabilities (e.g., Common Vulnerabilities and Exposures) to mitigate known vulnerabilities. Protect the SBOM according to countermeasures in CM0001.
Ensure proper protections are in place for ensuring dependency confusion is mitigated like ensuring that internal dependencies be pulled from private repositories vice public repositories, ensuring that your CI/CD/development environment is secure as defined in CM0004 and validate dependency integrity by ensuring checksums match official packages.