The [organization] shall perform penetration testing/analysis: (1) On potential system elements before accepting the system; (2) As a realistic simulation of the active adversary’s known adversary tactics, techniques, procedures (TTPs), and tools; and (3) Throughout the lifecycle on physical and logical systems, elements, and processes.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CA-8(1),SA-9,SA-11(5),SR-5(2)}
|
Penetration testing should be performed throughout the lifecycle on physical and logical systems, elements, and processes including: (1) Hardware, software, and firmware development processes; (2) Shipping/handling procedures; (3) Personnel and physical security programs; (4) Configuration management tools/measures to maintain provenance; and (5) Any other programs, processes, or procedures associated with the production/distribution of supply chain elements.
|
The [organization] shall define processes and procedures to be followed when integrity verification tools detect unauthorized changes to software, firmware, and information.{SV-IT-2}{CM-3,CM-3(1),CM-3(5),CM-5(6),CM-6,CP-2,IR-6,IR-6(2),PM-30,SC-16(1),SC-51,SI-3,SI-4(7),SI-4(24),SI-7,SI-7(7),SI-7(10)}
|
|
The [organization] shall develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including support tamper resistance and provide a level of protection against the introduction of malicious code or hardware.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{CM-3(8),CM-7(9),PM-30,SA-8(9),SA-8(11),SA-9,SA-10(3),SA-19,SC-51,SR-4(3),SR-4(4),SR-5(2),SR-11}
|
|
The [organization] shall conduct a criticality analysis to identify mission critical functions and critical components and reduce the vulnerability of such functions and components through secure system design.{SV-SP-3,SV-SP-4,SV-AV-7,SV-MA-4}{CP-2,CP-2(8),PL-7,PM-11,PM-30(1),RA-3(1),RA-9,SA-8(9),SA-8(11),SA-8(25),SA-12,SA-14,SA-15(3),SC-7(29),SR-1}
|
During SCRM, criticality analysis will aid in determining supply chain risk. For mission critical functions/components, extra scrutiny must be applied to ensure supply chain is secured.
|
The [organization] shall define policy and procedures to ensure that the developed or delivered systems do not embed unencrypted static authenticators in applications, access scripts, configuration files, nor store unencrypted static authenticators on function keys.{SV-AC-1,SV-AC-3}{IA-5(7)}
|
|
The [organization] shall develop policies and procedures to establish sufficient space domain awareness to avoid potential collisions or hostile proximity operations.This includes establishing relationships with relevant organizations needed for data sharing.{PE-6,PE-6(1),PE-6(4),PE-18,PE-20,RA-6,SC-7(14)}
|
|
The [organization] shall monitor physical access to all facilities where the system or system components reside throughout development, integration, testing, and launch to detect and respond to physical security incidents in coordination with the organizational incident response capability.{PE-6,PE-6(1),PE-6(4),PE-18,PE-20,SC-7(14)}
|
|
The [organization] shall use all-source intelligence analysis of suppliers and potential suppliers of the information system, system components, or system services to inform engineering, acquisition, and risk management decisions.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{PM-16,PM-30,RA-2,RA-3(1),RA-3(2),RA-7,SA-9,SA-12(8),SR-5(2)}
|
* The Program should also consider sub suppliers and potential sub suppliers.
* All-source intelligence of suppliers that the organization may use includes: (1) Defense Intelligence Agency (DIA) Threat Assessment Center (TAC), the enterprise focal point for supplier threat assessments for the DOD acquisition community risks; (2) Other U.S. Government resources including: (a) Government Industry Data Exchange Program (GIDEP) – Database where government and industry can record issues with suppliers, including counterfeits; and (b) System for Award Management (SAM) – Database of companies that are barred from doing business with the US Government.
|
The [organization] shall maintain documentation tracing the strategies, tools, and methods implemented to mitigate supply chain risk .{SV-SP-3,SV-SP-4,SV-AV-7}{PM-30,RA-3(1),SA-12(1),SR-5}
|
Examples include: (1) Transferring a portion of the risk to the developer or supplier through the use of contract language and incentives; (2) Using contract language that requires the implementation of SCRM throughout the system lifecycle in applicable contracts and other acquisition and assistance instruments (grants, cooperative agreements, Cooperative Research and Development Agreements (CRADAs), and other transactions). Within the DOD some examples include: (a) Language outlined in the Defense Acquisition Guidebook section 13.13. Contracting; (b) Language requiring the use of protected mechanisms to deliver elements and data about elements, processes, and delivery mechanisms; (c) Language that articulates that requirements flow down supply chain tiers to sub-prime suppliers. (3) Incentives for suppliers that: (a) Implement required security safeguards and SCRM best practices; (b) Promote transparency into their organizational processes and security practices; (c) Provide additional vetting of the processes and security practices of subordinate suppliers, critical information system components, and services; and (d) Implement contract to reduce SC risk down the contract stack. (4) Gaining insight into supplier security practices; (5) Using contract language and incentives to enable more robust risk management later in the lifecycle; (6) Using a centralized intermediary or “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary;
|
The [organization] shall protect against supply chain threats to the system, system components, or system services by employing security safeguards as defined by NIST SP 800-161 Rev.1.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{PM-30,RA-3(1),SA-8(9),SA-8(11),SA-12,SI-3,SR-1}
|
The chosen supply chain safeguards should demonstrably support a comprehensive, defense-in-breadth information security strategy. Safeguards should include protections for both hardware and software. Program should define their critical components (HW & SW) and identify the supply chain protections, approach/posture/process.
|
The [organization] shall employ [organization]-defined techniques to limit harm from potential adversaries identifying and targeting the Program supply chain.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-3(2),SC-38}
|
Examples of security safeguards that the organization should consider implementing to limit the harm from potential adversaries targeting the organizational supply chain, are: (1) Using trusted physical delivery mechanisms that do not permit access to the element during delivery (ship via a protected carrier, use cleared/official couriers, or a diplomatic pouch); (2) Using trusted electronic delivery of products and services (require downloading from approved, verification-enhanced sites); (3) Avoiding the purchase of custom configurations, where feasible; (4) Using procurement carve outs (i.e., exclusions to commitments or obligations), where feasible; (5) Using defensive design approaches; (6) Employing system OPSEC principles; (7) Employing a diverse set of suppliers; (8) Employing approved vendor lists with standing reputations in industry; (9) Using a centralized intermediary and “Blind Buy” approaches to acquire element(s) to hide actual usage locations from an untrustworthy supplier or adversary Employing inventory management policies and processes; (10) Using flexible agreements during each acquisition and procurement phase so that it is possible to meet emerging needs or requirements to address supply chain risk without requiring complete revision or re-competition of an acquisition or procurement; (11) Using international, national, commercial or government standards to increase potential supply base; (12) Limiting the disclosure of information that can become publicly available; and (13) Minimizing the time between purchase decisions and required delivery.
|
The [organization] shall employ the [organization]-defined approaches for the purchase of the system, system components, or system services from suppliers.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-5}
|
This could include tailored acquisition strategies, contract tools, and procurement methods.
|
The [organization] (and Prime Contractor) shall conduct a supplier review prior to entering into a contractual agreement with a contractor (or sub-contractor) to acquire systems, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-6}
|
|
The [organization] shall employ [Selection (one or more): independent third-party analysis, Program penetration testing, independent third-party penetration testing] of [Program-defined supply chain elements, processes, and actors] associated with the system, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-6(1)}
|
|
The [organization] shall employ [Program-defined Operations Security (OPSEC) safeguards] to protect supply chain-related information for the system, system components, or system services.{SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11}{SR-7,SC-38,CP-2(8)}
|
OPSEC safeguards may include: (1) Limiting the disclosure of information needed to design, develop, test, produce, deliver, and support the element for example, supplier identities, supplier processes, potential suppliers, security requirements, design specifications, testing and evaluation result, and system/component configurations, including the use of direct shipping, blind buys, etc.; (2) Extending supply chain awareness, education, and training for suppliers, intermediate users, and end users; (3) Extending the range of OPSEC tactics, techniques, and procedures to potential suppliers, contracted suppliers, or sub-prime contractor tier of suppliers; and (4) Using centralized support and maintenance services to minimize direct interactions between end users and original suppliers.
|
The [organization] shall enable integrity verification of software and firmware components.{SV-IT-2}{CM-3(5),CM-5(6),CM-10(1),SA-8(9),SA-8(11),SA-8(21),SA-10(1),SI-3,SI-4(24),SI-7,SI-7(10),SI-7(12),SR-4(4)}
|
* The integrity verification mechanisms may include:
** Stipulating and monitoring logical delivery of products and services, requiring downloading from approved, verification-enhanced sites;
** Encrypting elements (software, software patches, etc.) and supply chain process data in transit (motion) and at rest throughout delivery;
** Requiring suppliers to provide their elements “secure by default”, so that additional configuration is required to make the element insecure;
** Implementing software designs using programming languages and tools that reduce the likelihood of weaknesses;
** Implementing cryptographic hash verification; and
** Establishing performance and sub-element baseline for the system and system elements to help detect unauthorized tampering/modification during repairs/refurbishing.
** Stipulating and monitoring logical delivery of products and services, requiring downloading from approved, verification-enhanced sites;
** Encrypting elements (software, software patches, etc.) and supply chain process data in transit (motion) and at rest throughout delivery;
** Requiring suppliers to provide their elements “secure by default”, so that additional configuration is required to make the element insecure;
** Implementing software designs using programming languages and tools that reduce the likelihood of weaknesses;
** Implementing cryptographic hash verification; and
** Establishing performance and sub-element baseline for the system and system elements to help detect unauthorized tampering/modification during repairs/refurbishing.
|
The [spacecraft] shall protect authenticator content from unauthorized disclosure and modification.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),IA-5,IA-5(6),RA-5(4),SA-8(18),SA-8(19),SC-28(3)}
|
|
The [spacecraft] encryption key handling shall be handled outside of the onboard software and protected using cryptography.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(1),SC-28(3)}
|
|
The [spacecraft] encryption keys shall be restricted so that the onboard software is not able to access the information for key readout.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
|
|
The [spacecraft] encryption keys shall be restricted so that they cannot be read via any telecommands.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
|
|
The [spacecraft] shall produce, control, and distribute symmetric cryptographic keys using NSA Certified or Approved key management technology and processes per CNSSP 12.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-9(6),SC-12,SC-12(1),SC-12(2),SC-12(3)}
|
|
The [spacecraft] software subsystems shall provide non-identical methods, or functionally independent methods, for commanding a mission critical function when the software is the sole control of that function.{SV-MA-3,SV-AV-7}{AC-3(2)}
|
|
The [spacecraft] software subsystems shall provide two independent and unique command messages to deactivate a fault tolerant capability for a critical or catastrophic hazard.{SV-MA-3,SV-AV-7}{AC-3(2)}
|
|
The [spacecraft] shall provide automatic notification to ground operators upon discovering discrepancies during integrity verification.{SV-IT-2}{CM-3(5),SA-8(21),SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(2)}
|
|
The [spacecraft] shall enter a cyber-safe mode when conditions that threaten the platform are detected, enters a cyber-safe mode of operation with restrictions as defined based on the cyber-safe mode.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4,IR-4(1),IR-4(3),PE-10,RA-10,SA-8(16),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-13,SI-17}
|
|
The [spacecraft] shall provide the capability to enter the platform into a known good, operational cyber-safe mode from a tamper-resistant, configuration-controlled (“gold”) image that is authenticated as coming from an acceptable supplier, and has its integrity verified.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4(3),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-13,SI-17}
|
Cyber-safe mode is an operating mode of a spacecraft during which all nonessential systems are shut down and the spacecraft is placed in a known good state using validated software and configuration settings. Within cyber-safe mode authentication and encryption should still be enabled. The spacecraft should be capable of reconstituting firmware and SW functions to preattack levels to allow for the recovery of functional capabilities. This can be performed by self-healing, or the healing can be aided from the ground. However, the spacecraft needs to have the capability to replan, based on available equipment still available after a cyberattack. The goal is for the vehicle to resume full mission operations. If not possible, a reduced level of mission capability should be achieved.
|
The [spacecraft] shall enter cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-17}
|
|
The [spacecraft] shall fail to a known secure state for failures during initialization, and aborts preserving information necessary to return to operations in failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-13,SA-8(16),SA-8(19),SA-8(24),SC-24,SI-13,SI-17}
|
|
The [spacecraft] shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution).{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2}{CP-13,SA-8(19),SA-8(24),SC-7(18),SI-13,SI-13(4)}
|
|
The [organization] shall define the security safeguards that are to be automatically employed when integrity violations are discovered.{SV-IT-2}{CP-2,SA-8(21),SI-3,SI-4(7),SI-4(12),SI-7(5),SI-7(8)}
|
|
The [spacecraft] shall provide or support the capability for recovery and reconstitution to a known state after a disruption, compromise, or failure.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-4(4),CP-10,CP-10(4),CP-10(6),CP-13,IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(24)}
|
|
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards: [NSA- certified or approved cryptography for protection of classified information, FIPS-validated cryptography for the provision of hashing].{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2,SV-AC-3}{IA-7,SC-13}
|
|
The [spacecraft] shall protect system components, associated data communications, and communication buses in accordance with: (i) national emissions and TEMPEST policies and procedures, and (ii) the security category or sensitivity of the transmitted information.{SV-CF-2,SV-MA-2}{PE-14,PE-19,PE-19(1),RA-5(4),SA-8(18),SA-8(19),SC-8(1)}
|
The measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements. The concerns addressed by this control during operation are emanations leakage between multiple payloads within a single space platform, and between payloads and the bus.
|
The [organization] shall describe (a) the separation between RED and BLACK cables, (b) the filtering on RED power lines, (c) the grounding criteria for the RED safety grounds, (d) and the approach for dielectric separators on any potential fortuitous conductors.{SV-CF-2,SV-MA-2}{PE-19,PE-19(1)}
|
|
The [spacecraft] shall be designed such that it protects itself from information leakage due to electromagnetic signals emanations.{SV-CF-2,SV-MA-2}{PE-19,PE-19(1),RA-5(4),SA-8(19)}
|
This requirement applies if system components are being designed to address EMSEC and the measures taken to protect against compromising emanations must be in accordance with DODD S-5200.19, or superseding requirements.
|
The [spacecraft] shall be constructed with sufficient electromagnetic shielding to protect electronic components from damage to the degree deemed acceptable by the Program.{PE-9,PE-14,PE-18,PE-21}
|
|
The [spacecraft] shall generate error messages that provide information necessary for corrective actions without revealing information that could be exploited by adversaries.{SV-AV-5,SV-AV-6,SV-AV-7}{RA-5(4),SI-4(12),SI-11}
|
|
The [spacecraft] shall reveal error messages only to operations personnel monitoring the telemetry.{SV-AV-5,SV-AV-6,SV-AV-7}{RA-5(4),SI-4(12),SI-11}
|
|
The [organization] shall define and document the transitional state or security-relevant events when the spacecraft will perform integrity checks on software, firmware, and information.{SV-IT-2}{SA-8(21),SI-7(1),SI-7(10),SR-4(4)}
|
|
The [spacecraft] shall provide the capability for data connection ports or input/output devices to be disabled or removed prior to spacecraft operations.{SV-AC-5}{SA-9(2),SC-7(14),SC-41,SC-51}
|
Intent is for external physical data ports to be disabled (logical or physical) while in operational orbit. Port disablement does not necessarily need to be irreversible.
|
The [organization] shall use NIST Approved for symmetric key management for Unclassified systems; NSA Approved or stronger symmetric key management technology for Classified systems.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(2)}
|
FIPS-complaint technology used by the Program shall include (but is not limited to) cryptographic key generation algorithms or key distribution techniques that are either a) specified in a FIPS, or b) adopted in a FIPS and specified either in an appendix to the FIPS or in a document referenced by the FIPS.
NSA-approved technology used for symmetric key management by the Program shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.
|
The [organization] shall use NSA approved key management technology and processes.NSA-approved technology used for asymmetric key management by The [organization] shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)}
|
|
The [spacecraft] shall produce, control, and distribute asymmetric cryptographic keys using [organization]-defined asymmetric key management processes.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)}
|
In most cased the Program will leverage NSA-approved key management technology and processes.
|
The [spacecraft] shall protect the confidentiality and integrity of the [all information] using cryptography while it is at rest.{SV-IT-2,SV-CF-2}{SC-28,SC-28(1),SI-7(6)}
|
* Information at rest refers to the state of information when it is located on storage devices as specific components of information systems. This is often referred to as data-at-rest encryption.
|
The [spacecraft] software subsystems shall provide independent mission/cyber critical threads such that any one credible event will not corrupt another mission/cyber critical thread.{SV-MA-3,SV-AV-7}{SC-3}
|
|
The [spacecraft] shall protect the confidentiality and integrity of all transmitted information.{SV-IT-2,SV-AC-7}{SC-8}
|
* The intent as written is for all transmitted traffic to be protected. This includes internal to internal communications and especially outside of the boundary.
|
The [spacecraft] shall maintain the confidentiality and integrity of information during preparation for transmission and during reception.{SV-IT-2}{SC-8(2)}
|
* Preparation for transmission and during reception includes the aggregation, packing, and transformation options performed prior to transmission and the undoing of those operations that occur upon receipt.
|
The [spacecraft] software subsystems shall accept [Program defined hazardous] commands only when prerequisite checks are satisfied.{SV-MA-3,SV-AV-7}{SI-10}
|
|
The [spacecraft] software subsystems shall identify and reject commands received out-of-sequence when the out-of-sequence commands can cause a hazard/failure or degrade the control of a hazard or mission.{SV-MA-3,SV-AV-7}{SI-10}
|
|
The [spacecraft] software subsystems shall perform prerequisite checks for the execution of hazardous commands.{SV-MA-3,SV-AV-7}{SI-10}
|
|
The [spacecraft] software subsystems shall discriminate between valid and invalid input into the software and rejects invalid input.{SV-MA-3,SV-AV-7}{SI-10,SI-10(3)}
|
|
The [spacecraft] software subsystems shall properly handle spurious input and missing data.{SV-MA-3,SV-AV-7}{SI-10,SI-10(3)}
|
|
The [spacecraft] software subsystems shall validate a functionally independent parameter prior to the issuance of any sequence that could remove an inhibit or perform a hazardous action.{SV-MA-3,SV-AV-7}{SI-10(3)}
|
|
The [spacecraft] mission/cyber critical commands shall be "complex" and/or diverse from other commands so that a single bit flip could not transform a benign command into a hazardous command.{SV-MA-3,SV-AV-7}{SI-10(5)}
|
|
The [spacecraft] software subsystems shall provide at least one independent command for each operator-initiated action used to shut down a function leading to or reducing the control of a hazard.{SV-MA-3,SV-AV-7}{SI-10(5)}
|
|
The [spacecraft] shall have failure tolerance on sensors used by software to make mission-critical decisions.{SV-MA-3,SV-AV-7}{SI-13,SI-17}
|
|
The [spacecraft] fault management solution shall utilize memory uncorrectable bit error detection information in a strategy to autonomously minimize the adverse effects of uncorrectable bit errors within the spacecraft.{SV-IT-4}{SI-16}
|
|
The [spacecraft] Interrupt Service Routine (ISR) shall have the ability to simultaneously update check-bits for [organization]-defined memory addresses.{SV-IT-4}{SI-16}
|
|
The [spacecraft] shall integrate EDAC scheme with fault management and cyber-protection mechanisms to respond to the detection of uncorrectable multi-bit errors, other than time-delayed monitoring of EDAC telemetry by the mission operators on the ground.{SV-IT-4}{SI-16}
|
|
The [spacecraft] shall use Error Detection and Correcting (EDAC) memory.{SV-IT-4}{SI-16}
|
|
The [spacecraft] shall utilize an EDAC scheme to routinely check for bit errors in the stored data on board the spacecraft, correct the single-bit errors, and identify the memory addresses of data with uncorrectable multi-bit errors of at least order two, if not higher order in some cases.{SV-IT-4}{SI-16}
|
|
The [spacecraft] cyber-safe mode software/configuration should be stored onboard the spacecraft in memory with hardware-based controls and should not be modifiable.{SV-AV-5,SV-AV-6,SV-AV-7}{SI-17}
|
Cyber-safe mode is using a fail-secure mentality where if there is a malfunction that the spacecraft goes into a fail-secure state where cyber protections like authentication and encryption are still employed (instead of bypassed) and the spacecraft can be restored by authorized commands. The cyber-safe mode should be stored in a high integrity location of the on-board SV so that it cannot be modified by attackers.
|
The [spacecraft] software subsystems shall detect and recover/transition from detected memory errors to a known cyber-safe state.{SV-MA-3,SV-AV-7}{SI-17}
|
|
The [spacecraft] software subsystems shall initialize the spacecraft to a known safe state.{SV-MA-3,SV-AV-7}{SI-17}
|
|
The [spacecraft] software subsystems shall operate securely in off-nominal power conditions, including loss of power and spurious power transients.{SV-MA-3,SV-AV-7}{SI-17}
|
|
The [spacecraft] software subsystems shall perform an orderly, controlled system shutdown to a known cyber-safe state upon receipt of a termination command or condition.{SV-MA-3,SV-AV-7}{SI-17}
|
|
The [spacecraft] software subsystems shall recover to a known cyber-safe state when an anomaly is detected.{SV-MA-3,SV-AV-7}{SI-17}
|
|
The [spacecraft] software subsystems shall safely transition between all predefined, known states.{SV-MA-3,SV-AV-7}{SI-17}
|
|
The [spacecraft] shall perform an integrity check of [Program-defined software, firmware, and information] at startup; at [Program-defined transitional states or security-relevant events] {SV-IT-2}{SI-7(1)}
|
|
The [organization] shall employ automated tools that provide notification to [Program-defined personnel] upon discovering discrepancies during integrity verification.{SV-IT-2}{SI-7(2)}
|
|
The [spacecraft] shall automatically [Selection (one or more):restarts the FSW/processor, performs side swap, audits failure; implements Program-defined security safeguards] when integrity violations are discovered.{SV-IT-2}{SI-7(8)}
|
|
The [spacecraft] shall utilize strong fault management and redundancy to help mitigate threats against TT&C failure.{SV-AV-7}
|
|