PE-6(1) - Monitoring Physical Access | Intrusion Alarms and Surveillance Equipment

Monitor physical access to the facility where the system resides using physical intrusion alarms and surveillance equipment.


Informational References

ISO 27001

ID: PE-6(1)
Enhancement of : PE-6

Countermeasures Covered by Control

ID Name Description D3FEND
CM0077 Space Domain Awareness The credibility and effectiveness of many other types of defenses are enabled or enhanced by the ability to quickly detect, characterize, and attribute attacks against space systems. Space domain awareness (SDA) includes identifying and tracking space objects, predicting where objects will be in the future, monitoring the space environment and space weather, and characterizing the capabilities of space objects and how they are being used. Exquisite SDA—information that is more timely, precise, and comprehensive than what is publicly available—can help distinguish between accidental and intentional actions in space. SDA systems include terrestrial-based optical, infrared, and radar systems as well as space-based sensors, such as the U.S. military’s Geosynchronous Space Situational Awareness Program (GSSAP) inspector satellites. Many nations have SDA systems with various levels of capability, and an increasing number of private companies (and amateur space trackers) are developing their own space surveillance systems, making the space environment more transparent to all users.* *https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210225_Harrison_Defense_Space.pdf?N2KWelzCz3hE3AaUUptSGMprDtBlBSQG D3-APLM D3-PM D3-HCI D3-SYSM

Space Threats Tagged by Control

ID Description

Sample Requirements

Requirement

Related SPARTA Techniques and Sub-Techniques

ID Name Description
RD-0001 Acquire Infrastructure Threat actors may buy, lease, or rent infrastructure that can be used for future campaigns or to perpetuate other techniques. A wide variety of infrastructure exists for threat actors to connect to and communicate with target spacecraft. Infrastructure can include:
RD-0001.03 Spacecraft Threat actors may acquire their own spacecraft that has the capability to maneuver within close proximity to a target spacecraft. Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference.
RD-0002 Compromise Infrastructure Threat actors may compromise third-party infrastructure that can be used for future campaigns or to perpetuate other techniques. Infrastructure solutions include physical devices such as antenna, amplifiers, and convertors, as well as software used by satellite communicators. Instead of buying or renting infrastructure, a threat actor may compromise infrastructure and use it during other phases of the campaign's lifecycle.
RD-0002.03 3rd-Party Spacecraft Threat actors may compromise a 3rd-party spacecraft that has the capability to maneuver within close proximity to a target spacecraft. This technique enables historically lower-tier attackers the same capability as top tier nation-state actors without the initial development cost. Additionally, this technique complicates attribution of an attack. Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference. Further, the compromised spacecraft may posses the capability to grapple target spacecraft once it has established the appropriate space rendezvous. If from a proximity / rendezvous perspective a threat actor has the ability to connect via docking interface or expose testing (i.e., JTAG port) once it has grappled the target spacecraft, they could perform various attacks depending on the access enabled via the physical connection.
RD-0005 Obtain Non-Cyber Capabilities Threat actors may obtain non-cyber capabilities, primarily physical counterspace weapons or systems. These counterspace capabilities vary significantly in the types of effects they create, the level of technological sophistication required, and the level of resources needed to develop and deploy them. These diverse capabilities also differ in how they are employed and how easy they are to detect and attribute and the permanence of the effects they have on their target.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
RD-0005.01 Launch Services Threat actors may acquire launch capabilities through their own development or through space launch service providers (companies or organizations that specialize in launching payloads into space). Space launch service providers typically offer a range of services, including launch vehicle design, development, and manufacturing as well as payload integration and testing. These services are critical to the success of any space mission and require specialized expertise, advanced technology, and extensive infrastructure.
RD-0005.02 Non-Kinetic Physical ASAT A non-kinetic physical ASAT attack is when a satellite is physically damaged without any direct contact. Non-kinetic physical attacks can be characterized into a few types: electromagnetic pulses, high-powered lasers, and high-powered microwaves. These attacks have medium possible attribution levels and often provide little evidence of success to the attacker.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
RD-0005.03 Kinetic Physical ASAT Kinetic physical ASAT attacks attempt to damage or destroy space- or land-based space assets. They typically are organized into three categories: direct-ascent, co-orbital, and ground station attacks. The nature of these attacks makes them easier to attribute and allow for better confirmation of success on the part of the attacker. * *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
RD-0005.04 Electronic ASAT Rather than attempting to damage the physical components of space systems, electronic ASAT attacks target the means by which space systems transmit and receive data. Both jamming and spoofing are forms of electronic attack that can be difficult to attribute and only have temporary effects.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
IA-0005 Rendezvous & Proximity Operations Threat actors may perform a space rendezvous which is a set of orbital maneuvers during which a spacecraft arrives at the same orbit and approach to a very close distance (e.g. within visual contact or close proximity) to a target spacecraft.
IA-0005.02 Docked Vehicle / OSAM Threat actors may leverage docking vehicles to laterally move into a target spacecraft. If information is known on docking plans, a threat actor may target vehicles on the ground or in space to deploy malware to laterally move or execute malware on the target spacecraft via the docking interface.
IA-0005.03 Proximity Grappling Threat actors may posses the capability to grapple target spacecraft once it has established the appropriate space rendezvous. If from a proximity / rendezvous perspective a threat actor has the ability to connect via docking interface or expose testing (i.e., JTAG port) once it has grappled the target spacecraft, they could perform various attacks depending on the access enabled via the physical connection.
IA-0008 Rogue External Entity Threat actors may gain access to a victim spacecraft through the use of a rogue external entity. With this technique, the threat actor does not need access to a legitimate ground station or communication site.
IA-0008.02 Rogue Spacecraft Threat actors may gain access to a target spacecraft using their own spacecraft that has the capability to maneuver within close proximity to a target spacecraft to carry out a variety of TTPs (i.e., eavesdropping, side-channel, etc.). Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference.
IA-0008.03 ASAT/Counterspace Weapon Threat actors may utilize counterspace platforms to access/impact spacecraft. These counterspace capabilities vary significantly in the types of effects they create, the level of technological sophistication required, and the level of resources needed to develop and deploy them. These diverse capabilities also differ in how they are employed and how easy they are to detect and attribute and the permanence of the effects they have on their target.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0016 Jamming Threat actors may attempt to jam Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to inhibit a spacecraft's position, navigation, and/or timing functions.
EX-0016.01 Uplink Jamming An uplink jammer is used to interfere with signals going up to a satellite by creating enough noise that the satellite cannot distinguish between the real signal and the noise. Uplink jamming of the control link, for example, can prevent satellite operators from sending commands to a satellite. However, because the uplink jammer must be within the field of view of the antenna on the satellite receiving the command link, the jammer must be physically located within the vicinity of the command station on the ground.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0016.02 Downlink Jamming Downlink jammers target the users of a satellite by creating noise in the same frequency as the downlink signal from the satellite. A downlink jammer only needs to be as powerful as the signal being received on the ground and must be within the field of view of the receiving terminal’s antenna. This limits the number of users that can be affected by a single jammer. Since many ground terminals use directional antennas pointed at the sky, a downlink jammer typically needs to be located above the terminal it is attempting to jam. This limitation can be overcome by employing a downlink jammer on an air or space-based platform, which positions the jammer between the terminal and the satellite. This also allows the jammer to cover a wider area and potentially affect more users. Ground terminals with omnidirectional antennas, such as many GPS receivers, have a wider field of view and thus are more susceptible to downlink jamming from different angles on the ground.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0017 Kinetic Physical Attack Kinetic physical attacks attempt to damage or destroy space- or land-based space assets. They typically are organized into three categories: direct-ascent, co-orbital, and ground station attacks [beyond the focus of SPARTA at this time]. The nature of these attacks makes them easier to attribute and allow for better confirmation of success on the part of the attacker.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0017.01 Direct Ascent ASAT A direct-ascent ASAT is often the most commonly thought of threat to space assets. It typically involves a medium- or long-range missile launching from the Earth to damage or destroy a satellite in orbit. This form of attack is often easily attributed due to the missile launch which can be easily detected. Due to the physical nature of the attacks, they are irreversible and provide the attacker with near real-time confirmation of success. Direct-ascent ASATs create orbital debris which can be harmful to other objects in orbit. Lower altitudes allow for more debris to burn up in the atmosphere, while attacks at higher altitudes result in more debris remaining in orbit, potentially damaging other spacecraft in orbit.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0017.02 Co-Orbital ASAT Co-orbital ASAT attacks are when another satellite in orbit is used to attack. The attacking satellite is first placed into orbit, then later maneuvered into an intercepting orbit. This form of attack requires a sophisticated on-board guidance system to successfully steer into the path of another satellite. A co-orbital attack can be a simple space mine with a small explosive that follows the orbital path of the targeted satellite and detonates when within range. Another co-orbital attack strategy is using a kinetic-kill vehicle (KKV), which is any object that can be collided into a target satellite.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018 Non-Kinetic Physical Attack A non-kinetic physical attack is when a satellite is physically damaged without any direct contact. Non-kinetic physical attacks can be characterized into a few types: electromagnetic pulses, high-powered lasers, and high-powered microwaves. These attacks have medium possible attribution levels and often provide little evidence of success to the attacker.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
EX-0018.01 Electromagnetic Pulse (EMP) An EMP, such as those caused by high-altitude detonation of certain bombs, is an indiscriminate form of attack in space. For example, a nuclear detonation in space releases an electromagnetic pulse (EMP) that would have near immediate consequences for the satellites within range. The detonation also creates a high radiation environment that accelerates the degradation of satellite components in the affected orbits.* *https://aerospace.csis.org/aerospace101/counterspace-weapons-101
DE-0002 Prevent Downlink Threat actors may target the downlink connections to prevent the victim spacecraft from sending telemetry to the ground controllers. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0002.02 Jam Link Signal Threat actors may overwhelm/jam the downlink signal to prevent transmitted telemetry signals from reaching their destination without severe modification/interference, effectively leaving ground controllers unaware of vehicle activity during this time. Telemetry is the only method in which ground controllers can monitor the health and stability of the spacecraft while in orbit. By disabling this downlink, threat actors may be able to stop mitigations from taking place.
DE-0009 Camouflage, Concealment, and Decoys (CCD) This technique deals with the more physical aspects of CCD that may be utilized by threat actors. There are numerous ways a threat actor may utilize the physical operating environment to their advantage, including powering down and laying dormant within debris fields as well as launching EMI attacks during space-weather events.
DE-0009.01 Debris Field Threat actors may hide their spacecraft by laying dormant within clusters of space junk or similar debris fields. This could serve several purposes including concealment of inspection activities being performed by the craft, as well as facilitating some future kinetic intercept/attack, and more.
DE-0009.03 Trigger Premature Intercept Threat actors may utilize decoy technology to disrupt detection and interception systems and deplete resources that might otherwise prevent an actual attack taking place simultaneously or shortly after the decoy is deployed.