Driver Load Integrity Checking

Ensuring the integrity of drivers loaded during initialization of the operating system.

ID: D3-DLIC
Subclasses: 
Artifacts: 
Tactic:

Informational References

https://d3fend.mitre.org/technique/d3f:DriverLoadIntegrityChecking/

Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001
CM0024 Anti-counterfeit Hardware Develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including tamper resistance and protection against the introduction of malicious code or hardware.  AC-14 AC-20(5) CM-7(9) PL-8 PL-8(1) PM-30 PM-30(1) RA-3(1) SA-10(3) SA-10(4) SA-11 SA-3 SA-4(5) SA-8 SA-8(11) SA-8(13) SA-8(16) SA-9 SR-1 SR-10 SR-11 SR-11 SR-11(3) SR-11(3) SR-2 SR-2(1) SR-3 SR-4 SR-4(1) SR-4(2) SR-4(3) SR-4(4) SR-5 SR-5(2) SR-6(1) SR-9 SR-9(1) D3-AI D3-SWI D3-HCI D3-FEMC D3-DLIC D3-FV A.5.8 4.4 6.2 7.5.1 7.5.2 7.5.3 10.2 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30 5.2 5.3 7.5.1 7.5.2 7.5.3 A.5.1 A.5.2 A.5.4 A.5.19 A.5.31 A.5.36 A.5.37 A.5.19 A.5.20 A.5.21 A.8.30 A.5.20 A.5.21 A.5.21 A.8.30 A.5.20 A.5.21 A.5.23 A.8.29
CM0021 Software Digital Signature Prevent the installation of Flight Software without verification that the component has been digitally signed using a certificate that is recognized and approved by the mission. AC-14 CM-11 CM-11(3) CM-14 CM-14 CM-5(6) IA-2 SA-10(1) SA-11 SA-4(5) SA-8(29) SA-8(31) SA-9 SI-7 SI-7 SI-7(1) SI-7(12) SI-7(15) SI-7(6) D3-CH D3-CBAN D3-FV D3-DLIC D3-EAL D3-SBV A.8.19 A.5.16 A.5.2 A.5.4 A.5.8 A.5.14 A.5.22 A.5.23 A.8.21 A.8.29 A.8.30
CM0014 Secure boot Software/Firmware must verify a trust chain that extends through the hardware root of trust, boot loader, boot configuration file, and operating system image, in that order. The trusted boot/RoT computing module should be implemented on radiation tolerant burn-in (non-programmable) equipment.  AC-14 PL-8 PL-8(1) SA-8(10) SA-8(12) SA-8(13) SA-8(3) SA-8(30) SA-8(4) SC-51 SI-7 SI-7(1) SI-7(10) SI-7(9) D3-PH D3-BA D3-DLIC D3-TBI A.5.8

Related SPARTA Techniques and Sub-Techniques

ID Name Description
IA-0001 Compromise Supply Chain Threat actors may manipulate or compromise products or product delivery mechanisms before the customer receives them in order to achieve data or system compromise.
IA-0001.02 Software Supply Chain Threat actors may manipulate software binaries and applications prior to the customer receiving them in order to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one.
IA-0001.03 Hardware Supply Chain Threat actors may manipulate hardware components in the victim spacecraft prior to the customer receiving them in order to achieve data or system compromise. The threat actor can insert backdoors and give them a high level of control over the system when they modify the hardware or firmware in the supply chain. This would include ASIC and FPGA devices as well. A spacecraft component can also be damaged if a specific HW component, built to fail after a specific period, or counterfeit with a low reliability, breaks out.
IA-0002 Compromise Software Defined Radio Threat actors may target software defined radios due to their software nature to establish C2 channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert C2 channels for a threat actor.
IA-0004 Secondary/Backup Communication Channel Threat actors may compromise alternative communication pathways which may not be as protected as the primary pathway. Depending on implementation the contingency communication pathways/solutions may lack the same level of security (i.e., physical security, encryption, authentication, etc.) which if forced to use could provide a threat actor an opportunity to launch attacks. Typically these would have to be coupled with other denial of service techniques on the primary pathway to force usage of secondary pathways.
IA-0004.02 Receiver Threat actors may target the backup/secondary receiver on the space vehicle as a method to inject malicious communications into the mission. The secondary receivers may come from different supply chains than the primary which could have different level of security and weaknesses. Similar to the ground station, the communication through the secondary receiver could be forced or happening naturally.
IA-0006 Compromise Hosted Payload Threat actors may compromise the target spacecraft hosted payload to initially access and/or persist within the system. Hosted payloads can usually be accessed from the ground via a specific command set. The command pathways can leverage the same ground infrastructure or some host payloads have their own ground infrastructure which can provide an access vector as well. Threat actors may be able to leverage the ability to command hosted payloads to upload files or modify memory addresses in order to compromise the system. Depending on the implementation, hosted payloads may provide some sort of lateral movement potential.
IA-0007 Compromise Ground System Threat actors may initially compromise the ground system in order to access the target spacecraft. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes. Threat actors may also perform further reconnaissance within the system to enumerate mission networks and gather information related to ground station logical topology, missions ran out of said ground station, birds that are in-band of targeted ground stations, and other mission system capabilities.
IA-0007.01 Compromise On-Orbit Update Threat actors may manipulate and modify on-orbit updates before they are sent to the target spacecraft. This attack can be done in a number of ways, including manipulation of source code, manipulating environment variables, on-board table/memory values, or replacing compiled versions with a malicious one.
IA-0011 Auxiliary Device Compromise Threat actors may exploit the auxiliary/peripheral devices that get plugged into space vehicles. It is no longer atypical to see space vehicles, especially CubeSats, with Universal Serial Bus (USB) ports or other ports where auxiliary/peripheral devices can be plugged in. Threat actors can execute malicious code on the space vehicles by copying the malicious code to auxiliary/peripheral devices and taking advantage of logic on the space vehicle to execute code on these devices. This may occur through manual manipulation of the auxiliary/peripheral devices, modification of standard IT systems used to initially format/create the auxiliary/peripheral device, or modification to the auxiliary/peripheral devices' firmware itself.
EX-0003 Modify Authentication Process Threat actors may modify the internal authentication process of the victim spacecraft to facilitate initial access, recurring execution, or prevent authorized entities from accessing the spacecraft. This can be done through the modification of the software binaries or memory manipulation techniques.
EX-0004 Compromise Boot Memory Threat actors may manipulate boot memory in order to execute malicious code, bypass internal processes, or DoS the system. This technique can be used to perform other tactics such as Defense Evasion.
EX-0005 Exploit Hardware/Firmware Corruption Threat actors can target the underlying hardware and/or firmware using various TTPs that will be dependent on the specific hardware/firmware. Typically, software tools (e.g., antivirus, antimalware, intrusion detection) can protect a system from threat actors attempting to take advantage of those vulnerabilities to inject malicious code. However, there exist security gaps that cannot be closed by the above-mentioned software tools since they are not stationed on software applications, drivers or the operating system but rather on the hardware itself. Hardware components, like memory modules and caches, can be exploited under specific circumstances thus enabling backdoor access to potential threat actors. In addition to hardware, the firmware itself which often is thought to be software in its own right also provides an attack surface for threat actors. Firmware is programming that's written to a hardware device's non-volatile memory where the content is saved when a hardware device is turned off or loses its external power source. Firmware is written directly onto a piece of hardware during manufacturing and it is used to run on the device and can be thought of as the software that enables hardware to run. In the space vehicle context, firmware and field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic/code is considered equivalent to firmware.
EX-0005.01 Design Flaws Threat actors may target design features/flaws with the hardware design to their advantage to cause the desired impact. Threat actors may utilize the inherent design of the hardware (e.g. hardware timers, hardware interrupts, memory cells), which is intended to provide reliability, to their advantage to degrade other aspects like availability. Additionally, field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic can be exploited just like software code can be exploited. There could be logic/design flaws embedded in the hardware (i.e., FPGA/ASIC) which may be exploitable by a threat actor.
PER-0001 Memory Compromise Threat actors may manipulate memory (boot, RAM, etc.) in order for their malicious code and/or commands to remain on the victim spacecraft. The spacecraft may have mechanisms that allow for the automatic running of programs on system reboot, entering or returning to/from safe mode, or during specific events. Threat actors may target these specific memory locations in order to store their malicious code or file, ensuring that the attack remains on the system even after a reset.
PER-0002 Backdoor Threat actors may find and target various backdoors, or inject their own, within the victim spacecraft in the hopes of maintaining their attack.
PER-0002.01 Hardware Threat actors may find and target various hardware backdoors within the victim spacecraft in the hopes of maintaining their attack. Once in orbit, mitigating the risk of various hardware backdoors becomes increasingly difficult for ground controllers. By targeting these specific vulnerabilities, threat actors are more likely to remain persistent on the victim spacecraft and perpetuate further attacks.
PER-0002.02 Software Threat actors may inject code to create their own backdoor to establish persistent access to the spacecraft. This may be done through modification of code throughout the software supply chain or through modification of the software-defined radio configuration (if applicable).
DE-0007 Rootkit Rootkits are programs that hide the existence of malware by intercepting/hooking and modifying operating system API calls that supply system information. Rootkits or rootkit enabling functionality may reside at the flight software or kernel level in the operating system or lower, to include a hypervisor, Master Boot Record, or System Firmware.
DE-0008 Bootkit Adversaries may use bootkits to persist on systems and evade detection. Bootkits reside at a layer below the operating system and may make it difficult to perform full remediation unless an organization suspects one was used and can act accordingly.
LM-0001 Hosted Payload Threat actors may use the hosted payload within the victim spacecraft in order to gain access to other subsystems. The hosted payload often has a need to gather and send data to the internal subsystems, depending on its purpose. Threat actors may be able to take advantage of this communication in order to laterally move to the other subsystems and have commands be processed.
EXF-0006 Modify Communications Configuration Threat actors can manipulate communications equipment, modifying the existing software, hardware, or the transponder configuration to exfiltrate data via unintentional channels the mission has no control over.
EXF-0006.01 Software Defined Radio Threat actors may target software defined radios due to their software nature to setup exfiltration channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert exfiltration channels for a threat actor.
EXF-0006.02 Transponder Threat actors may change the transponder configuration to exfiltrate data via radio access to an attacker-controlled asset.

Space Threats Mapped

ID Description
SV-AC-3 Compromised master keys or any encryption key
SV-CF-2 Eavesdropping (RF and proximity)
SV-IT-2 Unauthorized modification or corruption of data
SV-MA-2 Heaters and flow valves of the propulsion subsystem are controlled by electric signals so cyberattacks against these signals could cause propellant lines to freeze, lock valves, waste propellant or even put in de-orbit or unstable spinning
SV-AV-4 Attacking the scheduling table to affect tasking
SV-IT-5 Onboard control procedures (i.e., ATS/RTS) that execute a scripts/sets of commands
SV-MA-3 Attacks on critical software subsystems
Attitude Determination and Control (AD&C) subsystem determines and controls the orientation of the satellite. Any cyberattack that could disrupt some portion of the control loop - sensor data, computation of control commands, and receipt of the commands would impact operations
Telemetry, Tracking and Commanding (TT&C) subsystem provides interface between satellite and ground system. Computations occur within the RF portion of the TT&C subsystem, presenting cyberattack vector
Command and Data Handling (C&DH) subsystem is the brains of the satellite. It interfaces with other subsystems, the payload, and the ground. It receives, validate, decodes, and sends commands to other subsystems, and it receives, processes, formats, and routes data for both the ground and onboard computer. C&DH has the most cyber content and is likely the biggest target for cyberattack.
Electrical Power Subsystem (EPS) provides, stores, distributes, and controls power on the satellite. An attack on EPS could disrupt, damage, or destroy the satellite.
SV-SP-1 Exploitation of software vulnerabilities (bugs); Unsecure code, logic errors, etc. in the FSW.
SV-SP-3 Introduction of malicious software such as a virus, worm, Distributed Denial-Of-Service (DDOS) agent, keylogger, rootkit, or Trojan Horse
SV-SP-6 Software reuse, COTS dependence, and standardization of onboard systems using building block approach with addition of open-source technology leads to supply chain threat
SV-SP-9 On-orbit software updates/upgrades/patches/direct memory writes. If TT&C is compromised or MOC or even the developer's environment, the risk exists to do a variation of a supply chain attack where after it is in orbit you inject malicious code
SV-AC-5 Proximity operations (i.e., grappling satellite)
SV-AC-6 Three main parts of S/C. CPU, memory, I/O interfaces with parallel and/or serial ports. These are connected via busses (i.e., 1553) and need segregated. Supply chain attack on CPU (FPGA/ASICs), supply chain attack to get malware burned into memory through the development process, and rogue RTs on 1553 bus via hosted payloads are all threats. Security or fault management being disabled by non-mission critical or payload; fault injection or MiTM into the 1553 Bus - China has developed fault injector for 1553 - this could be a hosted payload attack if payload has access to main 1553 bus; One piece of FSW affecting another. Things are not containerized from the OS or FSW perspective;
SV-AC-8 Malicious Use of hardware commands - backdoors / critical commands
SV-AV-2 Satellites base many operations on timing especially since many operations are automated. Cyberattack to disrupt timing/timers could affect the vehicle (Time Jamming / Time Spoofing)
SV-AV-3 Affect the watchdog timer onboard the satellite which could force satellite into some sort of recovery mode/protocol
SV-IT-3 Compromise boot memory
SV-IT-4 Cause bit flip on memory via single event upsets
SV-MA-8 Payload (or other component) is told to constantly sense or emit or run whatever mission it had to the point that it drained the battery constantly / operated in a loop at maximum power until the battery is depleted.
SV-SP-11 Software defined radios - SDR is also another computer, networked to other parts of the spacecraft that could be pivoted to by an attacker and infected with malicious code. Once access to an SDR is gained, the attacker could alter what the SDR thinks is correct frequencies and settings to communicate with the ground.
SV-SP-7 Software can be broken down into three levels (operating system and drivers’ layer, data handling service layer, and the application layer). Highest impact on system is likely the embedded code at the BIOS, kernel/firmware level. Attacking the on-board operating systems. Since it manages all the programs and applications on the computer, it has a critical role in the overall security of the system. Since threats may occur deliberately or due to human error, malicious programs or persons, or existing system vulnerability mitigations must be deployed to protect the OS.
SV-AV-5 Using fault management system against you. Understanding the fault response could be leveraged to get satellite in vulnerable state. Example, safe mode with crypto bypass, orbit correction maneuvers, affecting integrity of TLM to cause action from ground, or some sort of RPO to cause S/C to go into safe mode;
SV-AV-6 Complete compromise or corruption of running state
SV-DCO-1 Not knowing that you were attacked, or attack was attempted
SV-MA-5 Not being able to recover from cyberattack
SV-AC-1 Attempting access to an access-controlled system resulting in unauthorized access
SV-AC-2 Replay of recorded authentic communications traffic at a later time with the hope that the authorized communications will provide data or some other system reaction
SV-CF-1 Tapping of communications links (wireline, RF, network) resulting in loss of confidentiality; Traffic analysis to determine which entities are communicating with each other without being able to read the communicated information
SV-CF-4 Adversary monitors for safe-mode indicators such that they know when satellite is in weakened state and then they launch attack
SV-IT-1 Communications system spoofing resulting in denial of service and loss of availability and data integrity
SV-AC-7 Weak communication protocols. Ones that don't have strong encryption within it
SV-AV-1 Communications system jamming resulting in denial of service and loss of availability and data integrity
SV-MA-7 Exploit ground system and use to maliciously to interact with the spacecraft
SV-AC-4 Masquerading as an authorized entity in order to gain access/Insider Threat
SV-AV-7 The TT&C is the lead contributor to satellite failure over the first 10 years on-orbit, around 20% of the time. The failures due to gyro are around 12% between year one and 6 on-orbit and then ramp up starting around year six and overtake the contributions of the TT&C subsystem to satellite failure. Need to ensure equipment is not counterfeit and the supply chain is sound.
SV-CF-3 Knowledge of target satellite's cyber-related design details would be crucial to inform potential attacker - so threat is leaking of design data which is often stored Unclass or on contractors’ network
SV-MA-4 Not knowing what your crown jewels are and how to protect them now and in the future.
SV-MA-6 Not planning for security on SV or designing in security from the beginning
SV-SP-10 Compromise development environment source code (applicable to development environments not covered by threat SV-SP-1, SV-SP-3, and SV-SP-4).
SV-SP-2 Testing only focuses on functional requirements and rarely considers end to end or abuse cases
SV-SP-4 General supply chain interruption or manipulation
SV-SP-5 Hardware failure (i.e., tainted hardware) {ASIC and FPGA focused}

Sample Requirements

Requirement
The spacecraft shall protect the confidentiality and integrity of the [all information] using cryptography while it is at rest. {SV-IT-2,SV-CF-2} {SC-28,SC-28(1),SI-7(6)}
The Program shall define processes and procedures to be followed when the integrity verification tools detect unauthorized changes to [Program-defined software, firmware, and information]. {SV-IT-2} {SI-7}
The Program shall enable integrity verification of software and firmware components. {SV-IT-2} {SA-10(1),SI-7}
The spacecraft shall perform an integrity check of [Program-defined software, firmware, and information] at startup; at [Program-defined transitional states or security-relevant events] {SV-IT-2} {SI-7(1)}
The Program shall define and document the transitional state or security-relevant events when the spacecraft will perform integrity checks on software, firmware, and information. {SV-IT-2} {SI-7(1)}
The spacecraft shall provide automatic notification to [Program-defined personnel (e.g., ground operators)] upon discovering discrepancies during integrity verification. {SV-IT-2} {SI-7(2)}
The Program shall employ automated tools that provide notification to [Program-defined personnel] upon discovering discrepancies during integrity verification. {SV-IT-2} {SI-7(2)}
The Program shall define the security safeguards that are to be employed when integrity violations are discovered. {SV-IT-2} {SI-7(5)}
The spacecraft shall automatically [Selection (one or more):restarts the FSW/processor, performs side swap, audits failure; implements Program-defined security safeguards] when integrity violations are discovered. {SV-IT-2} {SI-7(8)}
The Program shall require the developer of the system, system component, or system services to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes]. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9} {SA-3,SA-4(3)}
The Program shall require subcontractors developing information system components or providing information system services (as appropriate) to demonstrate the use of a system development life cycle that includes [state-of-the-practice system/security engineering methods, software development methods, testing/evaluation/validation techniques, and quality control processes]. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-9} {SA-3,SA-4(3)}
The Program shall require the developer of the system, system component, or system service to deliver the system, component, or service with [Program-defined security configurations] implemented. {SV-SP-1,SV-SP-9} {SA-4(5)}
The Program shall require the developer of the system, system component, or system service to use [Program-defined security configurations] as the default for any subsequent system, component, or service reinstallation or upgrade. {SV-SP-1,SV-SP-3,SV-SP-9} {SA-4(5)}
The spacecraft shall prevent the installation of Flight Software without verification that the component has been digitally signed using a certificate that is recognized and approved by the Program. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-9} {CM-14}
The Program shall perform and document threat and vulnerability analyses of the as-built system, system components, or system services. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(2)}
The Program shall use the threat and vulnerability analyses of the as-built system, system components, or system services to inform and direct subsequent testing/evaluation of the as-built system, component, or service. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(2)}
The Program shall perform a manual code review of all flight code. {SV-SP-1,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(4)}
The Program shall conduct an Attack Surface Analysis and reduce attack surfaces to a level that presents a low level of compromise by an attacker. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(6),SA-15(5)}
The Program shall use threat modeling and vulnerability analysis to inform the current development process using analysis from similar systems, components, or services where applicable. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(2),SA-15(8)}
The Program shall create and implement a security assessment plan that includes: (1) The types of analyses, testing, evaluation, and reviews of [all] software and firmware components; (2) The degree of rigor to be applied to include abuse cases and/or penetration testing; and (3) The types of artifacts produced during those processes. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11,SA-11(5),CA-8}
The Program shall verify that the scope of security testing/evaluation provides complete coverage of required security controls (to include abuse cases and penetration testing) at the depth of testing defined in the test documents. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(5),SA-11(7),CA-8}
The Program shall perform [Selection (one or more): unit; integration; system; regression] testing/evaluation at [Program-defined depth and coverage]. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11}
The Program shall maintain evidence of the execution of the security assessment plan and the results of the security testing/evaluation. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11,CA-8}
The Program shall implement a verifiable flaw remediation process into the developmental and operational configuration management process. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11}
The Program shall correct flaws identified during security testing/evaluation. {SV-SP-1,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11}
The Program shall create prioritized list of software weakness classes (e.g., Common Weakness Enumerations) to be used during static code analysis for prioritization of static analysis results. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(1),SA-15(7)}
The Program shall perform static source code analysis for [all available source code] looking for [Select one {Program-defined Top CWE List, SANS Top 25, OWASP Top 10}] weaknesses using no less than two static code analysis tools. {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(1),SA-15(7),RA-5}
The Program shall employ dynamic analysis (e.g., using simulation, penetration testing, fuzzing, etc.) to identify software/firmware weaknesses and vulnerabilities in developed and incorporated code (open source, commercial, or third-party developed code). {SV-SP-1,SV-SP-2,SV-SP-3,SV-SP-6,SV-SP-7,SV-SP-9,SV-SP-11} {SA-11(5),SA-11(8),CA-8}
The Program shall protect against supply chain threats to the system, system components, or system services by employing [institutional-defined security safeguards] {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-1}
The Program shall request threat analysis of suppliers of critical components and manage access to and control of threat analysis products containing U.S. person information. {SV-SP-3,SV-SP-4,SV-SP-11} {SR-1}
The Program shall employ the [Program-defined] approaches for the purchase of the system, system components, or system services from suppliers. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-5}
The Program shall employ [Selection (one or more): independent third-party analysis, Program penetration testing, independent third-party penetration testing] of [Program-defined supply chain elements, processes, and actors] associated with the system, system components, or system services. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-6(1)}
The Program shall perform penetration testing/analysis: (1) On potential system elements before accepting the system; (2) As a realistic simulation of the active adversary’s known adversary tactics, techniques, procedures (TTPs), and tools; and (3) Throughout the lifecycle on physical and logical systems, elements, and processes. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SA-11(5)}
The Program shall employ [Program-defined] techniques to limit harm from potential adversaries identifying and targeting the Program supply chain. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-3(2),SC-38}
The Program shall maintain a list of suppliers and potential suppliers used, and the products that they supply to include software. {SV-SP-3,SV-SP-4,SV-SP-11} {PL-8(2)}
The Program shall develop and implement anti-counterfeit policy and procedures designed to detect and prevent counterfeit components from entering the information system, including support tamper resistance and provide a level of protection against the introduction of malicious code or hardware. {SV-SP-3,SV-SP-4,SV-AV-7,SV-SP-11} {SR-11}
The Program shall develop and implement anti-counterfeit policy and procedures, in coordination with the [CIO], that is demonstrably consistent with the anti-counterfeit policy defined by the Program office. {SV-SP-4,SV-SP-11} {SR-11}
The Program shall perform static binary analysis of all firmware that is utilized on the spacecraft. {SV-SP-7,SV-SP-11} {SA-11,RA-5}
The Program shall conduct a criticality analysis to identify mission critical functions and critical components and reduce the vulnerability of such functions and components through secure system design. {SV-SP-3,SV-SP-4,SV-AV-7,SV-MA-4} {SR-1,RA-9,SA-15(3),CP-2(8)}
The Program shall maintain documentation tracing the strategies, tools, and methods implemented to the Program-defined strategies, tools, and methods as a means to mitigate supply chain risk . {SV-SP-3,SV-SP-4,SV-AV-7} {SR-5}
The spacecraft shall perform attestation at each stage of startup and ensure overall trusted boot regime (i.e., root of trust). {SV-IT-3} {SI-7(9)}
The trusted boot/RoT shall be a separate compute engine controlling the trusted computing platform cryptographic processor. {SV-IT-3} {SI-7(9)}
The trusted boot/RoT computing module shall be implemented on radiation tolerant burn-in (non-programmable) equipment. {SV-IT-3} {SI-7(9)}
The spacecraft boot firmware must verify a trust chain that extends through the hardware root of trust, boot loader, boot configuration file, and operating system image, in that order. {SV-IT-3} {SI-7(9)}
The spacecraft boot firmware must enter a recovery routine upon failing to verify signed data in the trust chain, and not execute or trust that signed data. {SV-IT-3} {SI-7(9)}
The spacecraft shall allocate enough boot ROM memory for secure boot firmware execution. {SV-IT-3} {SI-7(9)}
The spacecraft shall allocate enough SRAM memory for secure boot firmware execution. {SV-IT-3} {SI-7(9)}
The spacecraft secure boot mechanism shall be Commercial National Security Algorithm Suite (CNSA) compliant. {SV-IT-3} {SI-7(9)}
The spacecraft shall support the algorithmic construct Elliptic Curve Digital Signature Algorithm (ECDSA) NIST P-384 + SHA-38{SV-IT-3} {SI-7(9)}
The spacecraft hardware root of trust must be an ECDSA NIST P-384 public key. {SV-IT-3} {SI-7(9)}
The spacecraft hardware root of trust must be loadable only once, post-purchase. {SV-IT-3} {SI-7(9)}
The spacecraft boot firmware must validate the boot loader, boot configuration file, and operating system image, in that order, against their respective signatures. {SV-IT-3} {SI-7(9)}
The spacecraft shall retain the capability to update/upgrade operating systems while on-orbit. {SV-SP-7} {SA-4(5)}
The spacecraft, upon detection of a potential integrity violation, shall provide the capability to [audit the event and alert ground operators]. {SV-DCO-1} {SI-7(8)}
The spacecraft shall implement relay and replay-resistant authentication mechanisms for establishing a remote connection. {SV-AC-1,SV-AC-2} {IA-2(8)}
The spacecraft shall implement cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission unless otherwise protected by alternative physical safeguards. {SV-AC-7} {SC-8(1),SI-7(6)}
The Program shall document and design a security architecture using a defense-in-depth approach that allocates the Program defined safeguards to the indicated locations and layers: [Examples include operating system abstractions and hardware mechanisms to the separate processors in the spacecraft, internal components, and the FSW]. {SV-MA-6} {PL-8,PL-8(1)}
The Program shall ensure that the allocated security safeguards operate in a coordinated and mutually reinforcing manner. {SV-MA-6} {PL-8(1)}
The Program shall implement a security architecture and design that provides the required security functionality, allocates security controls among physical and logical components, and integrates individual security functions, mechanisms, and processes together to provide required security capabilities and a unified approach to protection. {SV-MA-6} {SA-2,SA-8}
The Program shall report counterfeit information system components to [Selection (one or more): source of counterfeit component; [Program-defined external reporting organizations]; [Program-defined personnel or roles]]. {SV-SP-4} {SR-11}
The Program shall report counterfeit information system components to the [CIO]. {SV-SP-4} {SR-11}
The Program shall ensure that the contractors/developers have all EEEE, and mechanical piece parts procured from the Original Component Manufacturer (OCM) or their authorized franchised distribution network. {SV-SP-5} {SR-1,SR-5}
Any EEEE or mechanical piece parts that cannot be procured from the OCM or their authorized franchised distribution network shall be approved by the program’s Parts, Materials and Processes Control Board (PMPCB) as well as the government program office to prevent and detect counterfeit and fraudulent parts and materials. {SV-SP-5} {SR-1,SR-5}
The Program shall ensure that the contractors/developers have all ASICs designed, developed, manufactured, packaged, and tested by suppliers with a Defense Microelectronics Activity (DMEA) Trust accreditation. {SV-SP-5} {SR-1,SR-5}
For ASICs that are designed, developed, manufactured, packaged, or tested by a supplier that is NOT DMEA accredited Trusted, the ASIC development shall undergo a threat/vulnerability risk assessment. The assessment shall use Aerospace security guidance and requirements tailored from TOR-2019-00506 Vol. 2, and TOR-2019-02543 ASIC and FPGA Risk Assessment Process and Checklist. Based on the results of the risk assessment, the Program may require the developer to implement protective measures or other processes to ensure the integrity of the ASIC. {SV-SP-5} {SR-1,SR-5}
The developer shall use a DMEA certified environment to develop, code and test executable software (firmware or bit-stream) that will be programmed into a one-time programmable FPGA or be programmed into non-volatile memory (NVRAM) that the FPGA executes. {SV-SP-5} {SR-1,SR-5}
For FPGA pre-silicon artifacts that are developed, coded, and tested by a developer that is NOT DMEA accredited Trusted, the contractor/developer shall be subjected to a development environment and pre-silicon artifacts risk assessment by the Program. The assessment shall use Aerospace security guidance and requirements in TOR-2019-00506 Vol. 2, and TOR-2019-02543 ASIC and FPGA Risk Assessment Process and Checklist. Based on the results of the risk assessment, the Program may require the developer to implement protective measures or other processes to ensure the integrity of the FPGA pre-silicon artifacts. {SV-SP-5} {SR-1,SR-5}
In the event we want to levy the Government Microelectronics Assessment for Trust (GOMAT) framework outright, to perform ASIC and FPGA threat/vulnerability risk assessment, the following requirements would apply: {SV-SP-5} {SR-1,SR-5} * The GOMAT framework shall be used to perform an initial risk assessment via Aerospace TOR-2019-02543 ASIC/FPGA Risk Assessment Process and Checklist. * The GOMAT framework shall be used to provide ASIC/FPGA lifecycle security guidance and requirements via Aerospace TOR-2019-00506 Volumes & 2 “ASIC and FPGA Lifecyle Security: Threats and Countermeasures”. * The GOMAT framework shall be used to perform development environment vulnerability assessment via Aerospace TOR-2019-02543 ASIC/FPGA Risk Assessment Process and Checklist. * The GOMAT framework shall be used to perform development environment vulnerability (DEV) assessment using the tailored DEV requirements from Aerospace TOR-2019-00506 Volume 2. * The GOMAT framework shall be used to perform hardware Trojan horse (HTH) detection independent verification and validation (IV&V). * The GOMAT framework shall be used to perform incremental and final risk assessments via Aerospace TOR-2019-02543 ASIC/FPGA Risk Assessment Process and Checklist. * The GOMAT framework shall be used to recommend mitigations, based on the findings of the risk assessments, to address identified security concerns and vulnerabilities.