Tamper Protection

Perform physical inspection of hardware to look for potential tampering. Leverage tamper proof protection where possible when shipping/receiving equipment.

Sources

Best Segment for Countermeasure Deployment

  • Ground Segment and Development Environment

NIST Rev5 Controls

ID: CM0028
Created: 2022/10/19
Last Modified: 2023/04/22

Techniques Addressed by Countermeasure

ID Name Description
IA-0001 Compromise Supply Chain Threat actors may manipulate or compromise products or product delivery mechanisms before the customer receives them in order to achieve data or system compromise.
.03 Hardware Supply Chain Threat actors may manipulate hardware components in the victim spacecraft prior to the customer receiving them in order to achieve data or system compromise. The threat actor can insert backdoors and give them a high level of control over the system when they modify the hardware or firmware in the supply chain. This would include ASIC and FPGA devices as well.
IA-0002 Compromise Software Defined Radio Threat actors may target software defined radios due to their software nature to establish C2 channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert C2 channels for a threat actor.
IA-0004 Secondary/Backup Communication Channel Threat actors may compromise alternative communication pathways which may not be as protected as the primary pathway. Depending on implementation the contingency communication pathways/solutions may lack the same level of security (i.e., physical security, encryption, authentication, etc.) which if forced to use could provide a threat actor an opportunity to launch attacks. Typically these would have to be coupled with other denial of service techniques on the primary pathway to force usage of secondary pathways.
.02 Receiver Threat actors may target the backup/secondary receiver on the space vehicle as a method to inject malicious communications into the mission. The secondary receivers may come from different supply chains than the primary which could have different level of security and weaknesses. Similar to the ground station, the communication through the secondary receiver could be forced or happening naturally.
IA-0006 Compromise Hosted Payload Threat actors may compromise the target spacecraft hosted payload to initially access and/or persist within the system. Hosted payloads can usually be accessed from the ground via a specific command set. The command pathways can leverage the same ground infrastructure or some host payloads have their own ground infrastructure which can provide an access vector as well. Threat actors may be able to leverage the ability to command hosted payloads to upload files or modify memory addresses in order to compromise the system. Depending on the implementation, hosted payloads may provide some sort of lateral movement potential.
IA-0011 Auxiliary Device Compromise Threat actors may exploit the auxiliary/peripheral devices that get plugged into space vehicles. It is no longer atypical to see space vehicles, especially CubeSats, with Universal Serial Bus (USB) ports or other ports where auxiliary/peripheral devices can be plugged in. Threat actors can execute malicious code on the space vehicles by copying the malicious code to auxiliary/peripheral devices and taking advantage of logic on the space vehicle to execute code on these devices. This may occur through manual manipulation of the auxiliary/peripheral devices, modification of standard IT systems used to initially format/create the auxiliary/peripheral device, or modification to the auxiliary/peripheral devices' firmware itself.
IA-0012 Assembly, Test, and Launch Operation Compromise Threat actors may target the spacecraft hardware and/or software while the spacecraft is at Assembly, Test, and Launch Operation (ATLO). ATLO is often the first time pieces of the spacecraft are fully integrated and exchanging data across interfaces. Malware could propagate from infected devices across the integrated spacecraft. For example, test equipment (i.e., transient cyber asset) is often brought in for testing elements of the spacecraft. Additionally, varying levels of physical security is in place which may be a reduction in physical security typically seen during development. The ATLO environment should be considered a viable attack vector and the appropriate/equivalent security controls from the primary development environment should be implemented during ATLO as well.
EX-0004 Compromise Boot Memory Threat actors may manipulate boot memory in order to execute malicious code, bypass internal processes, or DoS the system. This technique can be used to perform other tactics such as Defense Evasion.
EX-0005 Exploit Hardware/Firmware Corruption Threat actors can target the underlying hardware and/or firmware using various TTPs that will be dependent on the specific hardware/firmware. Typically, software tools (e.g., antivirus, antimalware, intrusion detection) can protect a system from threat actors attempting to take advantage of those vulnerabilities to inject malicious code. However, there exist security gaps that cannot be closed by the above-mentioned software tools since they are not stationed on software applications, drivers or the operating system but rather on the hardware itself. Hardware components, like memory modules and caches, can be exploited under specific circumstances thus enabling backdoor access to potential threat actors. In addition to hardware, the firmware itself which often is thought to be software in its own right also provides an attack surface for threat actors. Firmware is programming that's written to a hardware device's non-volatile memory where the content is saved when a hardware device is turned off or loses its external power source. Firmware is written directly onto a piece of hardware during manufacturing and it is used to run on the device and can be thought of as the software that enables hardware to run. In the space vehicle context, firmware and field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic/code is considered equivalent to firmware.
.01 Design Flaws Threat actors may target design features/flaws with the hardware design to their advantage to cause the desired impact. Threat actors may utilize the inherent design of the hardware (e.g. hardware timers, hardware interrupts, memory cells), which is intended to provide reliability, to their advantage to degrade other aspects like availability. Additionally, field programmable gate array (FPGA)/application-specific integrated circuit (ASIC) logic can be exploited just like software code can be exploited. There could be logic/design flaws embedded in the hardware (i.e., FPGA/ASIC) which may be exploitable by a threat actor.
PER-0001 Memory Compromise Threat actors may manipulate memory (boot, RAM, etc.) in order for their malicious code and/or commands to remain on the victim spacecraft. The spacecraft may have mechanisms that allow for the automatic running of programs on system reboot, entering or returning to/from safe mode, or during specific events. Threat actors may target these specific memory locations in order to store their malicious code or file, ensuring that the attack remains on the system even after a reset.
PER-0002 Backdoor Threat actors may find and target various backdoors, or inject their own, within the victim spacecraft in the hopes of maintaining their attack.
.01 Hardware Threat actors may find and target various hardware backdoors within the victim spacecraft in the hopes of maintaining their attack. Once in orbit, mitigating the risk of various hardware backdoors becomes increasingly difficult for ground controllers. By targeting these specific vulnerabilities, threat actors are more likely to remain persistent on the victim spacecraft and perpetuate further attacks.
PER-0004 Replace Cryptographic Keys Threat actors may attempt to fully replace the cryptographic keys on the space vehicle which could lockout the mission operators and enable the threat actor's communication channel. Once the encryption key is changed on the space vehicle, the spacecraft is rendered inoperable from the operators perspective as they have lost commanding access. Threat actors may exploit weaknesses in the key management strategy. For example, the threat actor may exploit the over-the-air rekeying procedures to inject their own cryptographic keys.
LM-0001 Hosted Payload Threat actors may use the hosted payload within the victim spacecraft in order to gain access to other subsystems. The hosted payload often has a need to gather and send data to the internal subsystems, depending on its purpose. Threat actors may be able to take advantage of this communication in order to laterally move to the other subsystems and have commands be processed.
EXF-0006 Modify Communications Configuration Threat actors can manipulate communications equipment, modifying the existing software, hardware, or the transponder configuration to exfiltrate data via unintentional channels the mission has no control over.
.01 Software Defined Radio Threat actors may target software defined radios due to their software nature to setup exfiltration channels. Since SDRs are programmable, when combined with supply chain or development environment attacks, SDRs provide a pathway to setup covert exfiltration channels for a threat actor.
.02 Transponder Threat actors may change the transponder configuration to exfiltrate data via radio access to an attacker-controlled asset.

Space Threats Addressed by Countermeasure

ID Description
SV-AC-6 Three main parts of S/C. CPU, memory, I/O interfaces with parallel and/or serial ports. These are connected via busses (i.e., 1553) and need segregated. Supply chain attack on CPU (FPGA/ASICs), supply chain attack to get malware burned into memory through the development process, and rogue RTs on 1553 bus via hosted payloads are all threats. Security or fault management being disabled by non-mission critical or payload; fault injection or MiTM into the 1553 Bus - China has developed fault injector for 1553 - this could be a hosted payload attack if payload has access to main 1553 bus; One piece of FSW affecting another. Things are not containerized from the OS or FSW perspective;  
SV-IT-3 Compromise boot memory  
SV-MA-8 Payload (or other component) is told to constantly sense or emit or run whatever mission it had to the point that it drained the battery constantly / operated in a loop at maximum power until the battery is depleted.  
SV-SP-11 Software defined radios - SDR is also another computer, networked to other parts of the spacecraft that could be pivoted to by an attacker and infected with malicious code. Once access to an SDR is gained, the attacker could alter what the SDR thinks is correct frequencies and settings to communicate with the ground.  
SV-SP-4 General supply chain interruption or manipulation  
SV-SP-5 Hardware failure (i.e., tainted hardware) {ASIC and FPGA focused}