Dependency Confusion

Ensure proper protections are in place for ensuring dependency confusion is mitigated like ensuring that internal dependencies be pulled from private repositories vice public repositories, ensuring that your CI/CD/development environment is secure as defined in CM0004 and validate dependency integrity by ensuring checksums match official packages.

Sources

Best Segment for Countermeasure Deployment

  • Development Environment

NIST Rev5 Controls

D3FEND Techniques

D3FEND Artifacts

ISO 27001

ID: CM0013
NASA Best Practice Guide:  MI-AUTH-01 | MI-AUTH-02 | MI-INTG-01 | MI-DCO-02
ESA Space Shield Mitigation: 
Created: 2022/10/19
Last Modified: 2023/11/29

Techniques Addressed by Countermeasure

ID Name Description
IA-0001 Compromise Supply Chain Threat actors may manipulate or compromise products or product delivery mechanisms before the customer receives them in order to achieve data or system compromise.
.01 Software Dependencies & Development Tools Threat actors may manipulate software dependencies (i.e. dependency confusion) and/or development tools prior to the customer receiving them in order to achieve data or system compromise. Software binaries and applications often depend on external software to function properly. spacecraft developers may use open source projects to help with their creation. These open source projects may be targeted by threat actors as a way to add malicious code to the victim spacecraft's dependencies.
.02 Software Supply Chain Threat actors may manipulate software binaries and applications prior to the customer receiving them in order to achieve data or system compromise. This attack can take place in a number of ways, including manipulation of source code, manipulation of the update and/or distribution mechanism, or replacing compiled versions with a malicious one.
IA-0007 Compromise Ground System Threat actors may initially compromise the ground system in order to access the target spacecraft. Once compromised, the threat actor can perform a multitude of initial access techniques, including replay, compromising FSW deployment, compromising encryption keys, and compromising authentication schemes. Threat actors may also perform further reconnaissance within the system to enumerate mission networks and gather information related to ground station logical topology, missions ran out of said ground station, birds that are in-band of targeted ground stations, and other mission system capabilities.
.01 Compromise On-Orbit Update Threat actors may manipulate and modify on-orbit updates before they are sent to the target spacecraft. This attack can be done in a number of ways, including manipulation of source code, manipulating environment variables, on-board table/memory values, or replacing compiled versions with a malicious one.
PER-0002 Backdoor Threat actors may find and target various backdoors, or inject their own, within the victim spacecraft in the hopes of maintaining their attack.
.02 Software Threat actors may inject code to create their own backdoor to establish persistent access to the spacecraft. This may be done through modification of code throughout the software supply chain or through modification of the software-defined radio configuration (if applicable).

Space Threats Addressed by Countermeasure

ID Description
SV-SP-1 Exploitation of software vulnerabilities (bugs); Unsecure code, logic errors, etc. in the FSW.  
SV-SP-3 Introduction of malicious software such as a virus, worm, Distributed Denial-Of-Service (DDOS) agent, keylogger, rootkit, or Trojan Horse  
SV-SP-6 Software reuse, COTS dependence, and standardization of onboard systems using building block approach with addition of open-source technology leads to supply chain threat  
SV-SP-9 On-orbit software updates/upgrades/patches/direct memory writes. If TT&C is compromised or MOC or even the developer's environment, the risk exists to do a variation of a supply chain attack where after it is in orbit you inject malicious code  
SV-SP-4 General supply chain interruption or manipulation