Replay: Command Packets

Threat actors may interact with the victim spacecraft by replaying captured commands to the spacecraft. While not necessarily malicious in nature, replayed commands can be used to overload the target spacecraft and cause it's onboard systems to crash, perform a DoS attack, or monitor various responses by the spacecraft. If critical commands are captured and replayed, thruster fires, then the impact could impact the spacecraft's attitude control/orbit.

ID: EX-0001.01
Sub-technique of:  EX-0001
Notional Risk (H | M | L):  25 | 24 | 21
Related Aerospace Threat IDs:  SV-AC-1 | SV-AC-2
Related MITRE ATT&CK TTPs:  T0831
Related ESA SPACE-SHIELD TTPs:  T2008.006 | T2019.005
Tactic:
Created: 2022/10/19
Last Modified: 2024/02/29

Countermeasures

ID Name Description NIST Rev5 D3FEND ISO 27001
CM0002 COMSEC A component of cybersecurity to deny unauthorized persons information derived from telecommunications and to ensure the authenticity of such telecommunications. COMSEC includes cryptographic security, transmission security, emissions security, and physical security of COMSEC material. It is imperative to utilize secure communication protocols with strong cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission. Systems should also maintain the confidentiality and integrity of information during preparation for transmission and during reception. Spacecraft should not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). The cryptographic mechanisms should identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters. AC-17 AC-17(1) AC-17(10) AC-17(10) AC-17(2) AC-18 AC-18(1) AC-2(11) AC-3(10) CA-3 IA-4(9) IA-5 IA-5(7) IA-7 PL-8 PL-8(1) SA-8(18) SA-8(19) SA-9(6) SC-10 SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-13 SC-16(3) SC-28(1) SC-28(3) SC-7 SC-7(10) SC-7(11) SC-7(18) SC-7(5) SC-8(1) SC-8(3) SI-10 SI-10(3) SI-10(5) SI-10(6) SI-19(4) SI-3(8) D3-ET D3-MH D3-MAN D3-MENCR D3-NTF D3-ITF D3-OTF D3-CH D3-DTP D3-NTA D3-CAA D3-DNSTA D3-IPCTA D3-NTCD D3-RTSD D3-PHDURA D3-PMAD D3-CSPP D3-MA D3-SMRA D3-SRA A.5.14 A.6.7 A.8.1 A.8.16 A.5.14 A.8.1 A.8.20 A.5.14 A.8.21 A.5.16 A.5.17 A.5.8 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.12 A.5.33 A.8.20 A.8.24 A.8.24 A.8.26 A.5.31 A.5.33 A.8.11
CM0031 Authentication Authenticate all communication sessions (crosslink and ground stations) for all commands before establishing remote connections using bidirectional authentication that is cryptographically based. Adding authentication on the spacecraft bus and communications on-board the spacecraft is also recommended. AC-14 AC-17 AC-17(10) AC-17(10) AC-17(2) AC-18 AC-18(1) IA-2 IA-3(1) IA-4 IA-4(9) IA-7 IA-9 PL-8 PL-8(1) SA-3 SA-4(5) SA-8 SA-8(15) SA-8(9) SC-16 SC-16(1) SC-16(2) SC-32(1) SC-7(11) SC-8(1) SI-14(3) SI-7(6) D3-MH D3-MAN D3-CH D3-BAN D3-MFA D3-TAAN D3-CBAN A.5.14 A.6.7 A.8.1 A.5.14 A.8.1 A.8.20 A.5.16 A.5.16 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.33
CM0033 Relay Protection Implement relay and replay-resistant authentication mechanisms for establishing a remote connection or connections on the spacecraft bus. AC-17(10) AC-17(10) IA-2(8) IA-3 IA-3(1) IA-4 IA-7 SC-13 SC-16(1) SC-23 SC-23(1) SC-23(3) SC-7 SC-7(11) SC-7(18) SI-10 SI-10(5) SI-10(6) SI-3(8) D3-ITF D3-NTA D3-OTF A.5.16 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.24 A.8.26 A.5.31
CM0073 Traffic Flow Analysis Defense Utilizing techniques to assure traffic flow security and confidentiality to mitigate or defeat traffic analysis attacks or reduce the value of any indicators or adversary inferences. This may be a subset of COMSEC protections, but the techniques would be applied where required to links that carry TT&C and/or data transmissions (to include on-board the spacecraft) where applicable given value and attacker capability. Techniques may include but are not limited to methods to pad or otherwise obfuscate traffic volumes/duration and/or periodicity, concealment of routing information and/or endpoints, or methods to frustrate statistical analysis. SC-8 SI-4(15) D3-NTA D3-ANAA D3-RPA D3-NTCD A.5.10 A.5.14 A.8.20 A.8.26
CM0036 Session Termination Terminate the connection associated with a communications session at the end of the session or after an acceptable amount of inactivity which is established via the concept of operations. AC-12 AC-12(2) SC-10 SI-14(3) SI-4(7) D3-SDA A.8.20
CM0055 Secure Command Mode(s) Provide additional protection modes for commanding the spacecraft. These can be where the spacecraft will restrict command lock based on geographic location of ground stations, special operational modes within the flight software, or even temporal controls where the spacecraft will only accept commands during certain times. AC-17(1) AC-17(10) AC-2(11) AC-2(12) AC-3 AC-3(2) AC-3(3) AC-3(4) AC-3(8) CA-3(7) IA-10 PL-8 PL-8(1) SA-3 SA-8 SC-7 SI-3(8) D3-AH D3-ACH D3-MFA D3-OTP A.8.16 A.5.15 A.5.33 A.8.3 A.8.4 A.8.18 A.8.20 A.8.2 A.8.16 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26
CM0034 Monitor Critical Telemetry Points Monitor defined telemetry points for malicious activities (i.e., jamming attempts, commanding attempts (e.g., command modes, counters, etc.)). This would include valid/processed commands as well as commands that were rejected. Telemetry monitoring should synchronize with ground-based Defensive Cyber Operations (i.e., SIEM/auditing) to create a full space system situation awareness from a cybersecurity perspective. AC-17(1) AU-3(1) CA-7(6) IR-4(14) PL-8 PL-8(1) SA-8(13) SC-16 SC-16(1) SC-7 SI-3(8) SI-4(7) D3-NTA D3-PM D3-PMAD D3-RTSD A.8.16 A.5.8 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26
CM0032 On-board Intrusion Detection & Prevention Utilize on-board intrusion detection/prevention system that monitors the mission critical components or systems and audit/logs actions. The IDS/IPS should have the capability to respond to threats (initial access, execution, persistence, evasion, exfiltration, etc.) and it should address signature-based attacks along with dynamic never-before seen attacks using machine learning/adaptive technologies. The IDS/IPS must integrate with traditional fault management to provide a wholistic approach to faults on-board the spacecraft. Spacecraft should select and execute safe countermeasures against cyber-attacks.  These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker — with or without ground support. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system. AU-14 AU-2 AU-3 AU-3(1) AU-4 AU-4(1) AU-5 AU-5(2) AU-5(5) AU-6(1) AU-6(4) AU-8 AU-9 AU-9(2) AU-9(3) CA-7(6) CM-11(3) CP-10 CP-10(4) IR-4 IR-4(11) IR-4(12) IR-4(14) IR-4(5) IR-5 IR-5(1) PL-8 PL-8(1) RA-10 RA-3(4) RA-3(4) SA-8(21) SA-8(22) SA-8(23) SC-16(2) SC-32(1) SC-5 SC-5(3) SC-7(10) SC-7(9) SI-10(6) SI-16 SI-17 SI-3 SI-3(10) SI-3(8) SI-4 SI-4(1) SI-4(10) SI-4(11) SI-4(13) SI-4(13) SI-4(16) SI-4(17) SI-4(2) SI-4(23) SI-4(24) SI-4(25) SI-4(4) SI-4(5) SI-4(7) SI-6 SI-7(17) SI-7(8) D3-FA D3-DA D3-FCR D3-FH D3-ID D3-IRA D3-HD D3-IAA D3-FHRA D3-NTA D3-PMAD D3-RTSD D3-ANAA D3-CA D3-CSPP D3-ISVA D3-PM D3-SDM D3-SFA D3-SFV D3-SICA D3-USICA D3-FBA D3-FEMC D3-FV D3-OSM D3-PFV D3-EHB D3-IDA D3-MBT D3-SBV D3-PA D3-PSMD D3-PSA D3-SEA D3-SSC D3-SCA D3-FAPA D3-IBCA D3-PCSV D3-FCA D3-PLA D3-UBA D3-RAPA D3-SDA D3-UDTA D3-UGLPA D3-ANET D3-AZET D3-JFAPA D3-LAM D3-NI D3-RRID D3-NTF D3-ITF D3-OTF D3-EI D3-EAL D3-EDL D3-HBPI D3-IOPR D3-KBPI D3-MAC D3-SCF A.8.15 A.8.15 A.8.6 A.8.17 A.5.33 A.8.15 A.8.15 A.5.29 A.5.25 A.5.26 A.5.27 A.5.8 A.5.7 A.8.12 A.8.7 A.8.16 A.8.16 A.8.16 A.8.16
CM0029 TRANSEC Utilize TRANSEC in order to prevent interception, disruption of reception, communications deception, and/or derivation of intelligence by analysis of transmission characteristics such as signal parameters or message externals. For example, jam-resistant waveforms can be utilized to improve the resistance of radio frequency signals to jamming and spoofing. Note: TRANSEC is that field of COMSEC which deals with the security of communication transmissions, rather than that of the information being communicated. AC-17 AC-18 AC-18(5) CA-3 CP-8 PL-8 PL-8(1) SA-8(19) SC-16 SC-16(1) SC-40 SC-40 SC-40(1) SC-40(1) SC-40(3) SC-40(3) SC-40(4) SC-40(4) SC-5 SC-8(1) SC-8(3) SC-8(4) D3-MH D3-MAN D3-MENCR D3-NTA D3-DNSTA D3-ISVA D3-NTCD D3-RTA D3-PMAD D3-FC D3-CSPP D3-ANAA D3-RPA D3-IPCTA D3-NTCD D3-NTPM D3-TAAN A.5.14 A.6.7 A.8.1 A.5.14 A.8.1 A.8.20 A.5.14 A.8.21 A.5.29 A.7.11 A.5.8 A.5.33

References