IA-0003 |
Crosslink via Compromised Neighbor |
Threat actors may compromise a victim spacecraft via the crosslink communications of a neighboring spacecraft that has been compromised. spacecraft in close proximity are able to send commands back and forth. Threat actors may be able to leverage this access to compromise other spacecraft once they have access to another that is nearby. |
IA-0005 |
Rendezvous & Proximity Operations |
Threat actors may perform a space rendezvous which is a set of orbital maneuvers during which a spacecraft arrives at the same orbit and approach to a very close distance (e.g. within visual contact or close proximity) to a target spacecraft. |
|
IA-0005.02 |
Docked Vehicle / OSAM |
Threat actors may leverage docking vehicles to laterally move into a target spacecraft. If information is known on docking plans, a threat actor may target vehicles on the ground or in space to deploy malware to laterally move or execute malware on the target spacecraft via the docking interface. |
IA-0006 |
Compromise Hosted Payload |
Threat actors may compromise the target spacecraft hosted payload to initially access and/or persist within the system. Hosted payloads can usually be accessed from the ground via a specific command set. The command pathways can leverage the same ground infrastructure or some host payloads have their own ground infrastructure which can provide an access vector as well. Threat actors may be able to leverage the ability to command hosted payloads to upload files or modify memory addresses in order to compromise the system. Depending on the implementation, hosted payloads may provide some sort of lateral movement potential. |
EX-0001 |
Replay |
Replay attacks involve threat actors recording previously recorded data streams and then resending them at a later time. This attack can be used to fingerprint systems, gain elevated privileges, or even cause a denial of service. |
|
EX-0001.01 |
Command Packets |
Threat actors may interact with the victim spacecraft by replaying captured commands to the spacecraft. While not necessarily malicious in nature, replayed commands can be used to overload the target spacecraft and cause it's onboard systems to crash, perform a DoS attack, or monitor various responses by the spacecraft. If critical commands are captured and replayed, thruster fires, then the impact could impact the spacecraft's attitude control/orbit. |
EX-0006 |
Disable/Bypass Encryption |
Threat actors may perform specific techniques in order to bypass or disable the encryption mechanism onboard the victim spacecraft. By bypassing or disabling this particular mechanism, further tactics can be performed, such as Exfiltration, that may have not been possible with the internal encryption process in place. |
EX-0014 |
Spoofing |
Threat actors may attempt to spoof the various sensor and controller data that is depended upon by various subsystems within the victim spacecraft. Subsystems rely on this data to perform automated tasks, process gather data, and return important information to the ground controllers. By spoofing this information, threat actors could trigger automated tasks to fire when they are not needed to, potentially causing the spacecraft to behave erratically. Further, the data could be processed erroneously, causing ground controllers to receive incorrect telemetry or scientific data, threatening the spacecraft's reliability and integrity. |
|
EX-0014.01 |
Time Spoof |
Threat actors may attempt to target the internal timers onboard the victim spacecraft and spoof their data. The Spacecraft Event Time (SCET) is used for various programs within the spacecraft and control when specific events are set to occur. Ground controllers use these timed events to perform automated processes as the spacecraft is in orbit in order for it to fulfill it's purpose. Threat actors that target this particular system and attempt to spoof it's data could cause these processes to trigger early or late. |
|
EX-0014.02 |
Bus Traffic |
Threat actors may attempt to target the main or secondary bus onboard the victim spacecraft and spoof their data. The spacecraft bus often directly processes and sends messages from the ground controllers to the various subsystems within the spacecraft and between the subsystems themselves. If a threat actor would target this system and spoof it internally, the subsystems would take the spoofed information as legitimate and process it as normal. This could lead to undesired effects taking place that could damage the spacecraft's subsystems, hosted payload, and critical data. |
|
EX-0014.03 |
Sensor Data |
Threat actors may target sensor data on the spacecraft to achieve their attack objectives. Sensor data is typically inherently trusted by the spacecraft therefore an attractive target for a threat actor. Spoofing the sensor data could affect the calculations and disrupt portions of a control loop as well as create uncertainty within the mission thereby creating temporary denial of service conditions for the mission. Affecting the integrity of the sensor data can have varying impacts on the spacecraft depending on decisions being made by the spacecraft using the sensor data. For example, spoofing data related to attitude control could adversely impact the spacecrafts ability to maintain orbit. |
|
EX-0014.04 |
Position, Navigation, and Timing (PNT) |
Threat actors may attempt to spoof Global Navigation Satellite Systems (GNSS) signals (i.e. GPS, Galileo, etc.) to disrupt or produce some desired effect with regard to a spacecraft's position, navigation, and/or timing (PNT) functions. |
DE-0004 |
Masquerading |
Threat actors may gain access to a victim spacecraft by masquerading as an authorized entity. This can be done several ways, including through the manipulation of command headers, spoofing locations, or even leveraging Insider's access (i.e., Insider Threat) |
LM-0001 |
Hosted Payload |
Threat actors may use the hosted payload within the victim spacecraft in order to gain access to other subsystems. The hosted payload often has a need to gather and send data to the internal subsystems, depending on its purpose. Threat actors may be able to take advantage of this communication in order to laterally move to the other subsystems and have commands be processed. |
LM-0002 |
Exploit Lack of Bus Segregation |
Threat actors may exploit victim spacecraft on-board flat architecture for lateral movement purposes. Depending on implementation decisions, spacecraft can have a completely flat architecture where remote terminals, sub-systems, payloads, etc. can all communicate on the same main bus without any segmentation, authentication, etc. Threat actors can leverage this poor design to send specially crafted data from one compromised devices or sub-system. This could enable the threat actor to laterally move to another area of the spacecraft or escalate privileges (i.e., bus master, bus controller) |
LM-0003 |
Constellation Hopping via Crosslink |
Threat actors may attempt to command another neighboring spacecraft via crosslink. spacecraft in close proximity are often able to send commands back and forth. Threat actors may be able to leverage this access to compromise another spacecraft. |
LM-0004 |
Visiting Vehicle Interface(s) |
Threat actors may move from one spacecraft to another through visiting vehicle interfaces. When a vehicle docks with a spacecraft, many programs are automatically triggered in order to ensure docking mechanisms are locked. This entails several data points and commands being sent to and from the spacecraft and the visiting vehicle. If a threat actor were to compromise a visiting vehicle, they could target these specific programs in order to send malicious commands to the victim spacecraft once docked. |
EXF-0001 |
Replay |
Threat actors may exfiltrate data by replaying commands and capturing the telemetry or payload data as it is sent down. One scenario would be the threat actor replays commands to downlink payload data once the spacecraft is within certain location so the data can be intercepted on the downlink by threat actor ground terminals. |
EXF-0004 |
Out-of-Band Communications Link |
Threat actors may attempt to exfiltrate data via the out-of-band communication channels. While performing eavesdropping on the primary/second uplinks and downlinks is a method for exfiltration, some spacecrafts leverage out-of-band communication links to perform actions on the spacecraft (i.e., re-keying). These out-of-band links would occur on completely different channels/frequencies and often operate on separate hardware on the spacecraft. Typically these out-of-band links have limited built-for-purpose functionality and likely do not present an initial access vector but they do provide ample exfiltration opportunity. |
EXF-0010 |
Payload Communication Channel |
Threat actors can deploy malicious software on the payload(s) which can send data through the payload channel. Payloads often have their own communication channels outside of the main TT&C pathway which presents an opportunity for exfiltration of payload data or other spacecraft data depending on the interface and data exchange. |