Rogue External Entity: Rogue Spacecraft

Threat actors may gain access to a target spacecraft using their own spacecraft that has the capability to maneuver within close proximity to a target spacecraft to carry out a variety of TTPs (i.e., eavesdropping, side-channel, etc.). Since many of the commercial and military assets in space are tracked, and that information is publicly available, attackers can identify the location of space assets to infer the best positioning for intersecting orbits. Proximity operations support avoidance of the larger attenuation that would otherwise affect the signal when propagating long distances, or environmental circumstances that may present interference.

ID: IA-0008.02
Sub-technique of:  IA-0008
Notional Risk (H | M | L):  25 | 24 | 21
Related Aerospace Threat IDs:  SV-CF-2
Related MITRE ATT&CK TTPs:  T1133
Related ESA SPACE-SHIELD TTPs:  T1557.002 | T2029
Created: 2022/10/19
Last Modified: 2023/04/22


ID Name Description NIST Rev5 D3FEND ISO 27001
CM0077 Space Domain Awareness The credibility and effectiveness of many other types of defenses are enabled or enhanced by the ability to quickly detect, characterize, and attribute attacks against space systems. Space domain awareness (SDA) includes identifying and tracking space objects, predicting where objects will be in the future, monitoring the space environment and space weather, and characterizing the capabilities of space objects and how they are being used. Exquisite SDA—information that is more timely, precise, and comprehensive than what is publicly available—can help distinguish between accidental and intentional actions in space. SDA systems include terrestrial-based optical, infrared, and radar systems as well as space-based sensors, such as the U.S. military’s Geosynchronous Space Situational Awareness Program (GSSAP) inspector satellites. Many nations have SDA systems with various levels of capability, and an increasing number of private companies (and amateur space trackers) are developing their own space surveillance systems, making the space environment more transparent to all users.* * CP-13 CP-2(3) CP-2(4) CP-2(5) CP-2(7) PE-20 PE-6 SI-4(17) D3-APLM D3-PM D3-HCI D3-SYSM A.5.29 A.7.4 A.8.16 A.5.10
CM0079 Maneuverability Satellite maneuver is an operational tactic that can be used by satellites fitted with chemical thrusters to avoid kinetic and some directed energy ASAT weapons. For unguided projectiles, a satellite can be commanded to move out of their trajectory to avoid impact. If the threat is a guided projectile, like most direct-ascent ASAT and co-orbital ASAT weapons, maneuver becomes more difficult and is only likely to be effective if the satellite can move beyond the view of the onboard sensors on the guided warhead.* * CP-10(6) CP-13 CP-2 CP-2(1) CP-2(3) CP-2(4) CP-2(5) PE-20 PE-21 None 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.29 A.5.10
CM0080 Stealth Technology Space systems can be operated and designed in ways that make them difficult to detect and track. Similar to platforms in other domains, stealthy satellites can use a smaller size, radar-absorbing coatings, radar-deflecting shapes, radar jamming and spoofing, unexpected or optimized maneuvers, and careful control of reflected radar, optical, and infrared energy to make themselves more difficult to detect and track. For example, academic research has shown that routine spacecraft maneuvers can be optimized to avoid detection by known sensors.* * CP-10(6) CP-13 SC-30 SC-30(5) D3-PH A.5.29
CM0081 Defensive Jamming and Spoofing A jammer or spoofer can be used to disrupt sensors on an incoming kinetic ASAT weapon so that it cannot steer itself effectively in the terminal phase of flight. When used in conjunction with maneuver, this could allow a satellite to effectively “dodge” a kinetic attack. Similar systems could also be used to deceive SDA sensors by altering the reflected radar signal to change the location, velocity, and number of satellites detected, much like digital radio frequency memory (DRFM) jammers used on many military aircraft today. A spacebased jammer can also be used to disrupt an adversary’s ability to communicate.* * with an ASAT weapon. CP-10(6) CP-13 CP-2 CP-2(1) CP-2(5) CP-2(7) PE-20 D3-DO 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.29 A.5.10
CM0082 Deception and Decoys Deception can be used to conceal or mislead others on the “location, capability, operational status, mission type, and/or robustness” of a satellite. Public messaging, such as launch announcements, can limit information or actively spread disinformation about the capabilities of a satellite, and satellites can be operated in ways that conceal some of their capabilities. Another form of deception could be changing the capabilities or payloads on satellites while in orbit. Satellites with swappable payload modules could have on-orbit servicing vehicles that periodically move payloads from one satellite to another, further complicating the targeting calculus for an adversary because they may not be sure which type of payload is currently on which satellite. Satellites can also use tactical decoys to confuse the sensors on ASAT weapons and SDA systems. A satellite decoy can consist of an inflatable device designed to mimic the size and radar signature of a satellite, and multiple decoys can be stored on the satellite for deployment when needed. Electromagnetic decoys can also be used in space that mimic the RF signature of a satellite, similar to aircraft that use airborne decoys, such as the ADM-160 Miniature Air-launched Decoy (MALD).* * SC-26 SC-30 D3-DE D3-CHN D3-SHN D3-IHN D3-DO D3-DF D3-DNR D3-DP D3-DPR D3-DST D3-DUC None
CM0083 Antenna Nulling and Adaptive Filtering Satellites can be designed with antennas that “null” or minimize signals from a particular geographic region on the surface of the Earth or locations in space where jamming is detected. Nulling is useful when jamming is from a limited number of detectable locations, but one of the downsides is that it can also block transmissions from friendly users that fall within the nulled area. If a jammer is sufficiently close to friendly forces, the nulling antenna may not be able to block the jammer without also blocking legitimate users. Adaptive filtering, in contrast, is used to block specific frequency bands regardless of where these transmissions originate. Adaptive filtering is useful when jamming is consistently within a particular range of frequencies because these frequencies can be filtered out of the signal received on the satellite while transmissions can continue around them. However, a wideband jammer could interfere with a large enough portion of the spectrum being used that filtering out the jammed frequencies would degrade overall system performance. * * SC-40 SI-4(14) D3-PH None
CM0084 Physical Seizure A space vehicle capable of docking with, manipulating, or maneuvering other satellites or pieces of debris can be used to thwart spacebased attacks or mitigate the effects after an attack has occurred. Such a system could be used to physically seize a threatening satellite that is being used to attack or endanger other satellites or to capture a satellite that has been disabled or hijacked for nefarious purposes. Such a system could also be used to collect and dispose of harmful orbital debris resulting from an attack. A key limitation of a physical seizure system is that each satellite would be time- and propellant-limited depending on the orbit in which it is stored. A system stored in GEO, for example, would not be well positioned to capture an object in LEO because of the amount of propellant required to maneuver into position. Physical seizure satellites may need to be stored on Earth and deployed once they are needed to a specific orbit to counter a specific threat.* * CP-13 PE-20 D3-AM A.5.29 A.5.10
CM0085 Electromagnetic Shielding Satellite components can be vulnerable to the effects of background radiation in the space environment and deliberate attacks from HPM and electromagnetic pulse weapons. The effects can include data corruption on memory chips, processor resets, and short circuits that permanently damage components.* * CP-13 PE-18 PE-19 PE-21 D3-PH D3-RFS A.5.29 A.5.10 A.7.5 A.7.8 A.7.5 A.7.8 A.8.12
CM0086 Filtering and Shuttering Filters and shutters can be used on remote sensing satellites to protect sensors from laser dazzling and blinding. Filters can protect sensors by only allowing light of certain wavelengths to reach the sensors. Filters are not very effective against lasers operating at the same wavelengths of light the sensors are designed to detect because a filter that blocks these wavelengths would also block the sensor from its intended mission. A shutter acts by quickly blocking or diverting all light to a sensor once an anomaly is detected or a threshold is reached, which can limit damage but also temporarily interrupts the collection of data.* * CP-13 PE-18 SC-5 SC-5(3) D3-PH A.5.29 A.5.10 A.7.5 A.7.8
CM0087 Defensive Dazzling/Blinding Laser systems can be used to dazzle or blind the optical or infrared sensors on an incoming ASAT weapon in the terminal phase of flight. This is similar to the laser infrared countermeasures used on aircraft to defeat heat-seeking missiles. Blinding an ASAT weapon’s guidance system and then maneuvering to a new position (if necessary) could allow a satellite to effectively “dodge” a kinetic attack. It could also be used to dazzle or blind the optical sensors on inspector satellites to prevent them from imaging a satellite that wants to keep its capabilities concealed or to frustrate adversary SDA efforts.* * CP-10(6) CP-13 CP-2 CP-2(1) CP-2(5) CP-2(7) PE-20 None 7.5.1 7.5.2 7.5.3 A.5.2 A.5.29 A.8.1 A.5.30 A.5.29 A.5.10
CM0002 COMSEC A component of cybersecurity to deny unauthorized persons information derived from telecommunications and to ensure the authenticity of such telecommunications. COMSEC includes cryptographic security, transmission security, emissions security, and physical security of COMSEC material. It is imperative to utilize secure communication protocols with strong cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission. Systems should also maintain the confidentiality and integrity of information during preparation for transmission and during reception. Spacecraft should not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode). The cryptographic mechanisms should identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters. AC-17 AC-17(1) AC-17(10) AC-17(10) AC-17(2) AC-18 AC-18(1) AC-2(11) AC-3(10) CA-3 IA-4(9) IA-5 IA-5(7) IA-7 PL-8 PL-8(1) SA-8(18) SA-9(6) SC-10 SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-13 SC-16(3) SC-28(1) SC-28(3) SC-7 SC-7(10) SC-7(11) SC-7(18) SC-7(5) SC-8(1) SC-8(3) SI-10 SI-10(3) SI-10(5) SI-10(6) SI-19(4) SI-3(8) D3-ET D3-MH D3-MAN D3-MENCR D3-NTF D3-ITF D3-OTF D3-CH D3-DTP D3-NTA D3-CAA D3-DNSTA D3-IPCTA D3-NTCD D3-RTSD D3-PHDURA D3-PMAD D3-CSPP D3-MA D3-SMRA D3-SRA A.5.14 A.6.7 A.8.1 A.8.16 A.5.14 A.8.1 A.8.20 A.5.14 A.8.21 A.5.16 A.5.17 A.5.8 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.12 A.5.33 A.8.20 A.8.24 A.8.24 A.8.26 A.5.31 A.5.33 A.8.11
CM0030 Crypto Key Management Leverage best practices for crypto key management as defined by organization like NIST or the National Security Agency. Leverage only approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria. Encryption key handling should be performed outside of the onboard software and protected using cryptography. Encryption keys should be restricted so that they cannot be read via any telecommands. PL-8 PL-8(1) SA-3 SA-4(5) SA-8 SA-9(6) SC-12 SC-12(1) SC-12(2) SC-12(3) SC-12(6) SC-28(3) SC-8(1) D3-CH D3-CP A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.33 A.8.24
CM0033 Relay Protection Implement relay and replay-resistant authentication mechanisms for establishing a remote connection or connections on the spacecraft bus. AC-17(10) AC-17(10) IA-2(8) IA-3 IA-3(1) IA-4 IA-7 SC-13 SC-23 SC-7 SC-7(11) SC-7(18) SI-10 SI-10(5) SI-10(6) SI-3(8) D3-ITF D3-NTA D3-OTF A.5.16 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26 A.8.24 A.8.26 A.5.31
CM0055 Secure Command Mode(s) Provide additional protection modes for commanding the spacecraft. These can be where the spacecraft will restrict command lock based on geographic location of ground stations, special operational modes within the flight software, or even temporal controls where the spacecraft will only accept commands during certain times. AC-17(1) AC-17(10) AC-2(11) AC-2(12) AC-3 AC-3(2) AC-3(3) AC-3(4) AC-3(8) CA-3(7) PL-8 PL-8(1) SA-3 SA-8 SC-7 SI-3(8) D3-AH D3-ACH D3-MFA D3-OTP A.8.16 A.5.15 A.5.33 A.8.3 A.8.4 A.8.18 A.8.20 A.8.2 A.8.16 A.5.8 A.5.2 A.5.8 A.8.25 A.8.31 A.8.27 A.8.28 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26
CM0034 Monitor Critical Telemetry Points Monitor defined telemetry points for malicious activities (i.e., jamming attempts, commanding attempts (e.g., command modes, counters, etc.)). This would include valid/processed commands as well as commands that were rejected. Telemetry monitoring should synchronize with ground-based Defensive Cyber Operations (i.e., SIEM/auditing) to create a full space system situation awareness from a cybersecurity perspective. AC-17(1) AU-3(1) CA-7(6) IR-4(14) PL-8 PL-8(1) SA-8(13) SC-16 SC-7 SI-3(8) D3-NTA D3-PM D3-PMAD D3-RTSD A.8.16 A.5.8 A.5.14 A.8.16 A.8.20 A.8.22 A.8.23 A.8.26
CM0032 On-board Intrusion Detection & Prevention Utilize on-board intrusion detection/prevention system that monitors the mission critical components or systems and audit/logs actions. The IDS/IPS should have the capability to respond to threats (initial access, execution, persistence, evasion, exfiltration, etc.) and it should address signature-based attacks along with dynamic never-before seen attacks using machine learning/adaptive technologies. The IDS/IPS must integrate with traditional fault management to provide a wholistic approach to faults on-board the spacecraft. Spacecraft should select and execute safe countermeasures against cyber-attacks.  These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker — with or without ground support. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system. AU-14 AU-2 AU-3 AU-3(1) AU-4 AU-4(1) AU-5 AU-5(2) AU-5(5) AU-6(1) AU-6(4) AU-8 AU-9 AU-9(2) AU-9(3) CA-7(6) CM-11(3) CP-10 CP-10(4) IR-4 IR-4(11) IR-4(12) IR-4(14) IR-4(5) IR-5 IR-5(1) PL-8 PL-8(1) RA-10 RA-3(4) SA-8(21) SA-8(22) SA-8(23) SC-16(2) SC-32(1) SC-5 SC-5(3) SC-7(10) SC-7(9) SI-10(6) SI-16 SI-17 SI-3 SI-3(8) SI-4 SI-4(1) SI-4(10) SI-4(11) SI-4(13) SI-4(16) SI-4(17) SI-4(2) SI-4(23) SI-4(24) SI-4(25) SI-4(4) SI-4(5) SI-6 SI-7(17) SI-7(8) D3-FA D3-DA D3-FCR D3-FH D3-ID D3-IRA D3-HD D3-IAA D3-FHRA D3-NTA D3-PMAD D3-RTSD D3-ANAA D3-CA D3-CSPP D3-ISVA D3-PM D3-SDM D3-SFA D3-SFV D3-SICA D3-USICA D3-FBA D3-FEMC D3-FV D3-OSM D3-PFV D3-EHB D3-IDA D3-MBT D3-SBV D3-PA D3-PSMD D3-PSA D3-SEA D3-SSC D3-SCA D3-FAPA D3-IBCA D3-PCSV D3-FCA D3-PLA D3-UBA D3-RAPA D3-SDA D3-UDTA D3-UGLPA D3-ANET D3-AZET D3-JFAPA D3-LAM D3-NI D3-RRID D3-NTF D3-ITF D3-OTF D3-EI D3-EAL D3-EDL D3-HBPI D3-IOPR D3-KBPI D3-MAC D3-SCF A.8.15 A.8.15 A.8.6 A.8.17 A.5.33 A.8.15 A.8.15 A.5.29 A.5.25 A.5.26 A.5.27 A.5.8 A.5.7 A.8.12 A.8.7 A.8.16 A.8.16 A.8.16 A.8.16
CM0029 TRANSEC Utilize TRANSEC in order to prevent interception, disruption of reception, communications deception, and/or derivation of intelligence by analysis of transmission characteristics such as signal parameters or message externals. For example, jam-resistant waveforms can be utilized to improve the resistance of radio frequency signals to jamming and spoofing. Note: TRANSEC is that field of COMSEC which deals with the security of communication transmissions, rather than that of the information being communicated. AC-17 AC-18 AC-18(5) CA-3 CP-8 PL-8 PL-8(1) SC-16 SC-40 SC-40(1) SC-40(3) SC-40(4) SC-5 SC-8(1) SC-8(3) SC-8(4) D3-MH D3-MAN D3-MENCR D3-NTA D3-DNSTA D3-ISVA D3-NTCD D3-RTA D3-PMAD D3-FC D3-CSPP D3-ANAA D3-RPA D3-IPCTA D3-NTCD D3-NTPM D3-TAAN A.5.14 A.6.7 A.8.1 A.5.14 A.8.1 A.8.20 A.5.14 A.8.21 A.5.29 A.7.11 A.5.8 A.5.33