PE-4 - Access Control for Transmission

Control physical access to [Assignment: organization-defined system distribution and transmission lines] within organizational facilities using [Assignment: organization-defined security controls].


Informational References

ISO 27001

ID: PE-4
Enhancements: 

Countermeasures Covered by Control

ID Name Description D3FEND
CM0071 Communication Physical Medium Establish alternate physical medium for networking based on threat model/environment. For example, fiber optic cabling is commonly perceived as a better choice in lieu of copper for mitigating network security concerns (i.e., eavesdropping / traffic flow analysis) and this is because optical connections transmit data using light, they don’t radiate signals that can be intercepted. D3-MH D3-PLM

Space Threats Tagged by Control

ID Description

Sample Requirements

Requirement

Related SPARTA Techniques and Sub-Techniques

ID Name Description
EXF-0002 Side-Channel Attack Threat actors may use a side-channel attack attempts to gather information by measuring or exploiting indirect effects of the spacecraft. Information within the spacecraft can be extracted through these side-channels in which sensor data is analyzed in non-trivial ways to recover subtle, hidden or unexpected information. A series of measurements of a side-channel constitute an identifiable signature which can then be matched against a signature database to identify target information, without having to explicitly decode the side-channel.
EXF-0002.03 Traffic Analysis Attacks In a terrestrial environment, threat actors use traffic analysis attacks to analyze traffic flow to gather topological information. This traffic flow can divulge information about critical nodes, such as the aggregator node in a sensor network. In the space environment, specifically with relays and constellations, traffic analysis can be used to understand the energy capacity of spacecraft node and the fact that the transceiver component of a spacecraft node consumes the most power. The spacecraft nodes in a constellation network limit the use of the transceiver to transmit or receive information either at a regulated time interval or only when an event has been detected. This generally results in an architecture comprising some aggregator spacecraft nodes within a constellation network. These spacecraft aggregator nodes are the sensor nodes whose primary purpose is to relay transmissions from nodes toward the ground station in an efficient manner, instead of monitoring events like a normal node. The added functionality of acting as a hub for information gathering and preprocessing before relaying makes aggregator nodes an attractive target to side channel attacks. A possible side channel attack could be as simple as monitoring the occurrences and duration of computing activities at an aggregator node. If a node is frequently in active states (instead of idle states), there is high probability that the node is an aggregator node and also there is a high probability that the communication with the node is valid. Such leakage of information is highly undesirable because the leaked information could be strategically used by threat actors in the accumulation phase of an attack.
EXF-0004 Out-of-Band Communications Link Threat actors may attempt to exfiltrate data via the out-of-band communication channels. While performing eavesdropping on the primary/second uplinks and downlinks is a method for exfiltration, some space vehicles leverage out-of-band communication links to perform actions on the space vehicle (i.e., re-keying). These out-of-band links would occur on completely different channels/frequencies and often operate on separate hardware on the space vehicle. Typically these out-of-band links have limited built-for-purpose functionality and likely do not present an initial access vector but they do provide ample exfiltration opportunity.